A. N. Souza, J. He, T. Bischoff, M. Waruszewski, L. Novak, V. Barra, T. Gibson, A. Sridhar, S. Kandala, S. Byrne, L. C. Wilcox, J. Kozdon, F. X. Giraldo, O. Knoth, J. Marshall, R. Ferrari, T. Schneider
{"title":"The Flux-Differencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere","authors":"A. N. Souza, J. He, T. Bischoff, M. Waruszewski, L. Novak, V. Barra, T. Gibson, A. Sridhar, S. Kandala, S. Byrne, L. C. Wilcox, J. Kozdon, F. X. Giraldo, O. Knoth, J. Marshall, R. Ferrari, T. Schneider","doi":"10.1029/2022MS003527","DOIUrl":null,"url":null,"abstract":"<p>Dynamical cores used to study the circulation of the atmosphere employ various numerical methods ranging from finite-volume, spectral element, global spectral, and hybrid methods. In this work, we explore the use of Flux-Differencing Discontinuous Galerkin (FDDG) methods to simulate a fully compressible dry atmosphere at various resolutions. We show that the method offers a judicious compromise between high-order accuracy and stability for large-eddy simulations and simulations of the atmospheric general circulation. In particular, filters, divergence damping, diffusion, hyperdiffusion, or sponge-layers are not required to ensure stability; only the numerical dissipation naturally afforded by FDDG is necessary. We apply the method to the simulation of dry convection in an atmospheric boundary layer and in a global atmospheric dynamical core in the standard benchmark of Held and Suarez (1994, https://doi.org/10.1175/1520-0477(1994)075〈1825:apftio〉2.0.co;2).</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003527","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003527","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Dynamical cores used to study the circulation of the atmosphere employ various numerical methods ranging from finite-volume, spectral element, global spectral, and hybrid methods. In this work, we explore the use of Flux-Differencing Discontinuous Galerkin (FDDG) methods to simulate a fully compressible dry atmosphere at various resolutions. We show that the method offers a judicious compromise between high-order accuracy and stability for large-eddy simulations and simulations of the atmospheric general circulation. In particular, filters, divergence damping, diffusion, hyperdiffusion, or sponge-layers are not required to ensure stability; only the numerical dissipation naturally afforded by FDDG is necessary. We apply the method to the simulation of dry convection in an atmospheric boundary layer and in a global atmospheric dynamical core in the standard benchmark of Held and Suarez (1994, https://doi.org/10.1175/1520-0477(1994)075〈1825:apftio〉2.0.co;2).
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.