The Flux-Differencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
A. N. Souza, J. He, T. Bischoff, M. Waruszewski, L. Novak, V. Barra, T. Gibson, A. Sridhar, S. Kandala, S. Byrne, L. C. Wilcox, J. Kozdon, F. X. Giraldo, O. Knoth, J. Marshall, R. Ferrari, T. Schneider
{"title":"The Flux-Differencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere","authors":"A. N. Souza,&nbsp;J. He,&nbsp;T. Bischoff,&nbsp;M. Waruszewski,&nbsp;L. Novak,&nbsp;V. Barra,&nbsp;T. Gibson,&nbsp;A. Sridhar,&nbsp;S. Kandala,&nbsp;S. Byrne,&nbsp;L. C. Wilcox,&nbsp;J. Kozdon,&nbsp;F. X. Giraldo,&nbsp;O. Knoth,&nbsp;J. Marshall,&nbsp;R. Ferrari,&nbsp;T. Schneider","doi":"10.1029/2022MS003527","DOIUrl":null,"url":null,"abstract":"<p>Dynamical cores used to study the circulation of the atmosphere employ various numerical methods ranging from finite-volume, spectral element, global spectral, and hybrid methods. In this work, we explore the use of Flux-Differencing Discontinuous Galerkin (FDDG) methods to simulate a fully compressible dry atmosphere at various resolutions. We show that the method offers a judicious compromise between high-order accuracy and stability for large-eddy simulations and simulations of the atmospheric general circulation. In particular, filters, divergence damping, diffusion, hyperdiffusion, or sponge-layers are not required to ensure stability; only the numerical dissipation naturally afforded by FDDG is necessary. We apply the method to the simulation of dry convection in an atmospheric boundary layer and in a global atmospheric dynamical core in the standard benchmark of Held and Suarez (1994, https://doi.org/10.1175/1520-0477(1994)075〈1825:apftio〉2.0.co;2).</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003527","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003527","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Dynamical cores used to study the circulation of the atmosphere employ various numerical methods ranging from finite-volume, spectral element, global spectral, and hybrid methods. In this work, we explore the use of Flux-Differencing Discontinuous Galerkin (FDDG) methods to simulate a fully compressible dry atmosphere at various resolutions. We show that the method offers a judicious compromise between high-order accuracy and stability for large-eddy simulations and simulations of the atmospheric general circulation. In particular, filters, divergence damping, diffusion, hyperdiffusion, or sponge-layers are not required to ensure stability; only the numerical dissipation naturally afforded by FDDG is necessary. We apply the method to the simulation of dry convection in an atmospheric boundary layer and in a global atmospheric dynamical core in the standard benchmark of Held and Suarez (1994, https://doi.org/10.1175/1520-0477(1994)075〈1825:apftio〉2.0.co;2).

理想完全可压缩非静压干燥大气中的通量差分间断伽辽金法
用于研究大气环流的动力核采用了有限体积法、谱元法、全局谱法和混合方法等多种数值方法。在这项工作中,我们探索使用通量差分不连续伽辽金(FDDG)方法来模拟不同分辨率下的完全可压缩干燥大气。我们表明,该方法在大涡模拟和大气环流模拟的高阶精度和稳定性之间提供了明智的折衷。特别是,不需要过滤器、散度阻尼、扩散、超扩散或海绵层来确保稳定性;只需要FDDG自然提供的数值耗散。我们在Held和Suarez (1994, https://doi.org/10.1175/1520-0477(1994)075 < 1825:apftio > 2.0.co;2)的标准基准中,将该方法应用于大气边界层和全球大气动力核心的干对流模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信