{"title":"Delaying quantitative resistance to pesticides and antibiotics","authors":"Nate B. Hardy","doi":"10.1111/eva.13497","DOIUrl":null,"url":null,"abstract":"<p>How can we best vary the application of pesticides and antibiotics to delay resistance evolution? Previous theoretical comparisons of deployment strategies have focused on qualitative resistance traits and have mostly assumed that resistance alleles are already present in a population. But many real resistance traits are quantitative, and the evolution of resistant genotypes in the field may depend on de novo mutation and recombination. Here, I use an individual-based, forward-time, quantitative-genetic simulation model to investigate the evolution of quantitative resistance. I evaluate the performance of four application strategies for delaying resistance evolution, to wit, the (1) sequential, (2) mosaic, (3) periodic, and (4) combined strategies. I find that which strategy is best depends on initial efficacy. When at the onset, xenobiotics completely prevent reproduction in treated demes, a combined strategy is best. On the other hand, when populations are partially resistant, the combined strategy is inferior to mosaic and periodic strategies, especially when resistance alleles are antagonistically pleiotropic. Thus, the optimal application strategy for managing against the rise of quantitative resistance depends on pleiotropy and whether or not partial resistance is already present in a population. This result appears robust to variation in pest reproductive mode and migration rate, direct fitness costs for resistant phenotypes, and the extent of refugial habitats.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"15 12","pages":"2067-2077"},"PeriodicalIF":3.5000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13497","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13497","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
How can we best vary the application of pesticides and antibiotics to delay resistance evolution? Previous theoretical comparisons of deployment strategies have focused on qualitative resistance traits and have mostly assumed that resistance alleles are already present in a population. But many real resistance traits are quantitative, and the evolution of resistant genotypes in the field may depend on de novo mutation and recombination. Here, I use an individual-based, forward-time, quantitative-genetic simulation model to investigate the evolution of quantitative resistance. I evaluate the performance of four application strategies for delaying resistance evolution, to wit, the (1) sequential, (2) mosaic, (3) periodic, and (4) combined strategies. I find that which strategy is best depends on initial efficacy. When at the onset, xenobiotics completely prevent reproduction in treated demes, a combined strategy is best. On the other hand, when populations are partially resistant, the combined strategy is inferior to mosaic and periodic strategies, especially when resistance alleles are antagonistically pleiotropic. Thus, the optimal application strategy for managing against the rise of quantitative resistance depends on pleiotropy and whether or not partial resistance is already present in a population. This result appears robust to variation in pest reproductive mode and migration rate, direct fitness costs for resistant phenotypes, and the extent of refugial habitats.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.