Ruochen Zhang, Dr. Yang Feng, Dr. Youxuan Ni, Beidou Zhong, Maoyu Peng, Dr. Tianjiang Sun, Dr. Shan Chen, Prof. Huan Wang, Prof. Zhanliang Tao, Prof. Kai Zhang
{"title":"Bifunctional Interphase with Target-Distributed Desolvation Sites and Directionally Depositional Ion Flux for Sustainable Zinc Anode","authors":"Ruochen Zhang, Dr. Yang Feng, Dr. Youxuan Ni, Beidou Zhong, Maoyu Peng, Dr. Tianjiang Sun, Dr. Shan Chen, Prof. Huan Wang, Prof. Zhanliang Tao, Prof. Kai Zhang","doi":"10.1002/anie.202304503","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc batteries (AZBs) feature high safety and low cost, but intricate anodic side reactions and dendrite growth severely restrict their commercialization. Herein, ethylenediaminetetraacetic acid (EDTA) grafted metal organic framework (MOF-E) is proposed as a dually-functional anodic interphase for sustainable Zn anode. Specifically, the target-distributed EDTA serves as an ion-trapped tentacle to accelerate the desolvation and ionic transport by powerful chemical coordination, while the MOFs offer suitable ionic channels to induce oriented deposition. As a result, MOF-E interphase fundamentally suppresses side reactions and guides horizontally arranged Zn deposition with (002) preferred orientations. The Zn|MOF-E@Cu cell exhibits a markedly improved Coulombic efficiency of 99.7 % over 2500 cycles, and the MOF-E@Zn|KVOH (KV<sub>12</sub>O<sub>30-y</sub> ⋅ nH<sub>2</sub>O) cell yields a steady circulation of 5000 [email protected] % at 8 A g<sup>−1</sup>.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"62 25","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202304503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11
Abstract
Aqueous zinc batteries (AZBs) feature high safety and low cost, but intricate anodic side reactions and dendrite growth severely restrict their commercialization. Herein, ethylenediaminetetraacetic acid (EDTA) grafted metal organic framework (MOF-E) is proposed as a dually-functional anodic interphase for sustainable Zn anode. Specifically, the target-distributed EDTA serves as an ion-trapped tentacle to accelerate the desolvation and ionic transport by powerful chemical coordination, while the MOFs offer suitable ionic channels to induce oriented deposition. As a result, MOF-E interphase fundamentally suppresses side reactions and guides horizontally arranged Zn deposition with (002) preferred orientations. The Zn|MOF-E@Cu cell exhibits a markedly improved Coulombic efficiency of 99.7 % over 2500 cycles, and the MOF-E@Zn|KVOH (KV12O30-y ⋅ nH2O) cell yields a steady circulation of 5000 [email protected] % at 8 A g−1.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.