{"title":"Exosomes derived from microRNA-21 overexpressed adipose tissue-derived mesenchymal stem cells alleviate spine osteoporosis in ankylosing spondylitis mice","authors":"Lisheng Hu, Zhiping Guan, Chenfeng Tang, Guoxin Li, Jian Wen","doi":"10.1002/term.3304","DOIUrl":null,"url":null,"abstract":"<p>MicroRNA-21 (miR-21) can induce proliferation and differentiation of mesenchymal stem cells (MSCs) to promote bone formation, we therefore aimed to investigate whether exosomes derived from miR-21 overexpressing adipose tissue-derived MSCs (AD-MSCs) could improve spine osteoporosis in ankylosing spondylitis (AS) mice. Cultured AD-MSCs were transfected with lentivirus vectors containing miR-21 or control vector, and the supernatant was centrifugated and filtrated to harvest the exosomes (miR-21-Exos or vector-Exos). BALB/c mice were immunized with cartilage proteoglycan to establish proteoglycan-induced ankylosing spondylitis (PGIA) model. Six weeks later, PGIA mice were further injected with miR-21-Exos or vector-Exos. Transfection of miR-21 in AD-MSCs significantly enhanced miR-21 levels in AD-MSCs and their exosomes. miR-21-Exos showed concentration-dependent protective effect against spine osteoporosis in PGIA mice, evidenced by increased bone mineral content and bone mineral density, reduced number of osteoclasts, decreased content of deoxypyridinoline in the urine, decreased content of tartrate-resistant acid phosphatase (TRACP)-5b and cathepsin K in the serum, and down-regulated interleukin (IL)-6 expression in the spine, whereas vector-Exos did not show any treatment benefit. The above findings indicate that miR-21-Exos could be utilized to treat spine osteoporosis in AS.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 7","pages":"634-642"},"PeriodicalIF":3.1000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3304","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
MicroRNA-21 (miR-21) can induce proliferation and differentiation of mesenchymal stem cells (MSCs) to promote bone formation, we therefore aimed to investigate whether exosomes derived from miR-21 overexpressing adipose tissue-derived MSCs (AD-MSCs) could improve spine osteoporosis in ankylosing spondylitis (AS) mice. Cultured AD-MSCs were transfected with lentivirus vectors containing miR-21 or control vector, and the supernatant was centrifugated and filtrated to harvest the exosomes (miR-21-Exos or vector-Exos). BALB/c mice were immunized with cartilage proteoglycan to establish proteoglycan-induced ankylosing spondylitis (PGIA) model. Six weeks later, PGIA mice were further injected with miR-21-Exos or vector-Exos. Transfection of miR-21 in AD-MSCs significantly enhanced miR-21 levels in AD-MSCs and their exosomes. miR-21-Exos showed concentration-dependent protective effect against spine osteoporosis in PGIA mice, evidenced by increased bone mineral content and bone mineral density, reduced number of osteoclasts, decreased content of deoxypyridinoline in the urine, decreased content of tartrate-resistant acid phosphatase (TRACP)-5b and cathepsin K in the serum, and down-regulated interleukin (IL)-6 expression in the spine, whereas vector-Exos did not show any treatment benefit. The above findings indicate that miR-21-Exos could be utilized to treat spine osteoporosis in AS.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.