Adrian Goodyear*, Xin Linghu*, Brian Bishop, Cheng Chen, Ed Cleator, Mark McLaughlin, Faye J. Sheen, Gavin W. Stewart, Yingju Xu, Jingjun Yin.
{"title":"Process Development and Large-Scale Synthesis of MK-6186, a Non-Nucleoside Reverse Transcriptase Inhibitor for the Treatment of HIV","authors":"Adrian Goodyear*, Xin Linghu*, Brian Bishop, Cheng Chen, Ed Cleator, Mark McLaughlin, Faye J. Sheen, Gavin W. Stewart, Yingju Xu, Jingjun Yin.","doi":"10.1021/op200334x","DOIUrl":null,"url":null,"abstract":"<p >A new synthetic route has been developed to drug candidate <b>1</b>, a second-generation NNRTI being developed as a potential treatment of HIV. Regiocontrol in a key alkylation step was achieved by selective <i>N</i>-alkylation of hydrazone <b>13</b>. After a deprotection and cyclisation sequence, <b>1</b> was isolated in six steps in 35% overall yield from readily available starting materials.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"16 4","pages":"605–611"},"PeriodicalIF":3.5000,"publicationDate":"2012-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/op200334x","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/op200334x","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
A new synthetic route has been developed to drug candidate 1, a second-generation NNRTI being developed as a potential treatment of HIV. Regiocontrol in a key alkylation step was achieved by selective N-alkylation of hydrazone 13. After a deprotection and cyclisation sequence, 1 was isolated in six steps in 35% overall yield from readily available starting materials.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.