A Dual−Functional Cationic Covalent Organic Frameworks Modified Separator for High Energy Lithium Metal Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiyan Yao, Yan Yang, Ziwei Liang, Jiahe Chen, Jieying Ding, Fangkun Li, Junhao Liu, Lei Xi, Min Zhu, Jun Liu
{"title":"A Dual−Functional Cationic Covalent Organic Frameworks Modified Separator for High Energy Lithium Metal Batteries","authors":"Shiyan Yao,&nbsp;Yan Yang,&nbsp;Ziwei Liang,&nbsp;Jiahe Chen,&nbsp;Jieying Ding,&nbsp;Fangkun Li,&nbsp;Junhao Liu,&nbsp;Lei Xi,&nbsp;Min Zhu,&nbsp;Jun Liu","doi":"10.1002/adfm.202212466","DOIUrl":null,"url":null,"abstract":"<p>Separator modification is an efficient strategy to handle with the challenges of lithium metal batteries but its success is primarily subject to the modification of the materials. Herein, a cationic covalent organic framework (COF) composed of positively charged organic units and weakly bonded fluoride ions (F<sup>−</sup>) is introduced to modify the commercial polypropylene separator (COF−F@PP). It is found that the organic unit has abundant nanopores to homogenize the lithium ions (Li<sup>+</sup>) flux and can interact with electrolyte solvent molecules to form a desolvation structure of Li<sup>+</sup>. Meanwhile, the F<sup>−</sup> within the nanopores is proved to assist in building a robust LiF−riched solid electrolyte interphase to avoid the side reactions between lithium anode and electrolyte. Hence, the COF−F@PP delivers feasible practicality for the outstanding cycling stability, high Coulombic efficiency, and superior rate capability of Li//LFP coin cell at 5 C, low N/P ratio (2.19) full cell, and pouch cell at 1 C.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 13","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202212466","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

Separator modification is an efficient strategy to handle with the challenges of lithium metal batteries but its success is primarily subject to the modification of the materials. Herein, a cationic covalent organic framework (COF) composed of positively charged organic units and weakly bonded fluoride ions (F) is introduced to modify the commercial polypropylene separator (COF−F@PP). It is found that the organic unit has abundant nanopores to homogenize the lithium ions (Li+) flux and can interact with electrolyte solvent molecules to form a desolvation structure of Li+. Meanwhile, the F within the nanopores is proved to assist in building a robust LiF−riched solid electrolyte interphase to avoid the side reactions between lithium anode and electrolyte. Hence, the COF−F@PP delivers feasible practicality for the outstanding cycling stability, high Coulombic efficiency, and superior rate capability of Li//LFP coin cell at 5 C, low N/P ratio (2.19) full cell, and pouch cell at 1 C.

Abstract Image

高能锂金属电池用双功能阳离子共价有机框架改性隔膜
隔膜改性是应对锂金属电池挑战的一种有效策略,但其成功与否主要取决于材料的改性。本文介绍了一种由带正电的有机单元和弱键氟离子(F−)组成的阳离子共价有机骨架(COF)来修饰商用聚丙烯分离器(COF−F@PP)。发现该有机单元具有丰富的纳米孔使锂离子(Li+)通量均匀化,并能与电解质溶剂分子相互作用形成Li+的脱溶结构。同时,纳米孔内的F−有助于建立一个坚固的富LiF−固体电解质界面,以避免锂阳极和电解质之间的副反应。因此,COF - F@PP为5℃下的Li//LFP硬币电池、低N/P比(2.19)的满电池和1℃下的袋状电池提供了出色的循环稳定性、高库仑效率和优越的倍率能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信