Biofilm Microenvironment-Responsive Self-Assembly Nanoreactors for All-Stage Biofilm Associated Infection through Bacterial Cuproptosis-like Death and Macrophage Re-Rousing

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Mei, Dongdong Xu, Lingtian Wang, Lingtong Kong, Quan Liu, Qianming Li, Xianzuo Zhang, Zheng Su, Xianli Hu, Wanbo Zhu, Ming Ye, Jiaxing Wang, Chen Zhu
{"title":"Biofilm Microenvironment-Responsive Self-Assembly Nanoreactors for All-Stage Biofilm Associated Infection through Bacterial Cuproptosis-like Death and Macrophage Re-Rousing","authors":"Jiawei Mei,&nbsp;Dongdong Xu,&nbsp;Lingtian Wang,&nbsp;Lingtong Kong,&nbsp;Quan Liu,&nbsp;Qianming Li,&nbsp;Xianzuo Zhang,&nbsp;Zheng Su,&nbsp;Xianli Hu,&nbsp;Wanbo Zhu,&nbsp;Ming Ye,&nbsp;Jiaxing Wang,&nbsp;Chen Zhu","doi":"10.1002/adma.202303432","DOIUrl":null,"url":null,"abstract":"<p>Bacterial biofilm-associated infections (BAIs) are the leading cause of prosthetic implant failure. The dense biofilm structure prevents antibiotic penetration, while the highly acidic and H<sub>2</sub>O<sub>2</sub>-rich biofilm microenvironment (BME) dampens the immunological response of antimicrobial macrophages. Conventional treatments that fail to consistently suppress escaping planktonic bacteria from biofilm result in refractory recolonization, allowing BAIs to persist. Herein, a BME-responsive copper-doped polyoxometalate clusters (Cu-POM) combination with mild photothermal therapy (PTT) and macrophage immune re-rousing for BAI eradication at all stages is proposed. The self-assembly of Cu-POM in BME converts endogenous H<sub>2</sub>O<sub>2</sub> to toxic ·OH through chemodynamic therapy (CDT) and generates a mild PTT effect to induce bacterial metabolic exuberance, resulting in loosening the membrane structure of the bacteria, enhancing copper transporter activity and increasing intracellular Cu-POM flux. Metabolomics reveals that intracellular Cu-POM overload restricts the TCA cycle and peroxide accumulation, promoting bacterial cuproptosis-like death. CDT re-rousing macrophages scavenge planktonic bacteria escaping biofilm disintegration through enhanced chemotaxis and phagocytosis. Overall, BME-responsive Cu-POM promotes bacterial cuproptosis-like death via metabolic interference, while also re-rousing macrophage immune response for further planktonic bacteria elimination, resulting in all-stage BAI clearance and providing a new reference for future clinical application.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202303432","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Bacterial biofilm-associated infections (BAIs) are the leading cause of prosthetic implant failure. The dense biofilm structure prevents antibiotic penetration, while the highly acidic and H2O2-rich biofilm microenvironment (BME) dampens the immunological response of antimicrobial macrophages. Conventional treatments that fail to consistently suppress escaping planktonic bacteria from biofilm result in refractory recolonization, allowing BAIs to persist. Herein, a BME-responsive copper-doped polyoxometalate clusters (Cu-POM) combination with mild photothermal therapy (PTT) and macrophage immune re-rousing for BAI eradication at all stages is proposed. The self-assembly of Cu-POM in BME converts endogenous H2O2 to toxic ·OH through chemodynamic therapy (CDT) and generates a mild PTT effect to induce bacterial metabolic exuberance, resulting in loosening the membrane structure of the bacteria, enhancing copper transporter activity and increasing intracellular Cu-POM flux. Metabolomics reveals that intracellular Cu-POM overload restricts the TCA cycle and peroxide accumulation, promoting bacterial cuproptosis-like death. CDT re-rousing macrophages scavenge planktonic bacteria escaping biofilm disintegration through enhanced chemotaxis and phagocytosis. Overall, BME-responsive Cu-POM promotes bacterial cuproptosis-like death via metabolic interference, while also re-rousing macrophage immune response for further planktonic bacteria elimination, resulting in all-stage BAI clearance and providing a new reference for future clinical application.

Abstract Image

生物膜微环境响应自组装纳米反应器通过细菌铜噬样死亡和巨噬细胞再唤醒进行全阶段生物膜相关感染
细菌生物膜相关感染(BAIs)是导致假体植入失败的主要原因。致密的生物膜结构阻止了抗生素的渗透,而高酸性和富含h2o2的生物膜微环境(BME)则抑制了抗菌巨噬细胞的免疫反应。传统的处理方法不能持续地抑制从生物膜中逸出的浮游细菌,导致难以再定殖,从而使BAIs持续存在。本文提出了一种bme响应型铜掺杂多金属氧酸盐簇(Cu-POM),结合轻度光热疗法(PTT)和巨噬细胞免疫唤醒,在所有阶段根除BAI。Cu-POM在BME中的自组装通过CDT将内源性H2O2转化为有毒的·OH,并产生温和的PTT效应,诱导细菌代谢旺盛,导致细菌膜结构松动,铜转运体活性增强,细胞内Cu-POM通量增加。代谢组学揭示细胞内Cu-POM超载限制TCA循环和过氧化物积累,促进细菌铜中毒样死亡。CDT重组巨噬细胞通过增强趋化性和吞噬作用清除浮游细菌,使其免于生物膜解体。总体而言,bme响应性Cu-POM通过代谢干扰促进细菌铜中毒样死亡,同时重新激发巨噬细胞免疫反应进一步消除浮游细菌,实现全阶段BAI清除,为今后的临床应用提供新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信