{"title":"Quantifying the effects of long-range 13C-13C dipolar coupling on measured relaxation rates in RNA","authors":"Lukasz T. Olenginski, Theodore K. Dayie","doi":"10.1007/s10858-021-00368-8","DOIUrl":null,"url":null,"abstract":"<p>Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove <sup>13</sup>C-<sup>13</sup>C dipolar couplings that complicate <sup>13</sup>C relaxation analyses. While these phenomena are well documented for sites with adjacent <sup>13</sup>C nuclei (e.g. ribose C1′), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (>?2??) <sup>13</sup>C-<sup>13</sup>C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-<sup>13</sup>C/<sup>15</sup>N]-ATP or selectively [2-<sup>13</sup>C]-ATP labeled RNAs. Our simulations predict non-negligible <sup>13</sup>C-<sup>13</sup>C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R<sub>1</sub>) relaxation rates in [U-<sup>13</sup>C/<sup>15</sup>N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R<sub>1</sub> measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-<sup>13</sup>C/<sup>15</sup>N]-ATP or [2-<sup>13</sup>C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range <sup>13</sup>C-<sup>13</sup>C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R<sub>1</sub> rates in terms of motional models for large RNAs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10858-021-00368-8","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00368-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
Selective stable isotope labeling has transformed structural and dynamics analysis of RNA by NMR spectroscopy. These methods can remove 13C-13C dipolar couplings that complicate 13C relaxation analyses. While these phenomena are well documented for sites with adjacent 13C nuclei (e.g. ribose C1′), less is known about so-called isolated sites (e.g. adenosine C2). To investigate and quantify the effects of long-range (>?2??) 13C-13C dipolar interactions on RNA dynamics, we simulated adenosine C2 relaxation rates in uniformly [U-13C/15N]-ATP or selectively [2-13C]-ATP labeled RNAs. Our simulations predict non-negligible 13C-13C dipolar contributions from adenosine C4, C5, and C6 to C2 longitudinal (R1) relaxation rates in [U-13C/15N]-ATP labeled RNAs. Moreover, these contributions increase at higher magnetic fields and molecular weights to introduce discrepancies that exceed 50%. This will become increasingly important at GHz fields. Experimental R1 measurements in the 61 nucleotide human hepatitis B virus encapsidation signal ε RNA labeled with [U-13C/15N]-ATP or [2-13C]-ATP corroborate these simulations. Thus, in the absence of selectively labeled samples, long-range 13C-13C dipolar contributions must be explicitly taken into account when interpreting adenosine C2 R1 rates in terms of motional models for large RNAs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.