{"title":"Probabilistic seismic responses and failure analyses of free-spanning subsea pipelines under offshore spatial earthquake motions","authors":"Haiyang Pan , Hong-Nan Li , Chao Li , Li Tian","doi":"10.1016/j.tws.2022.109566","DOIUrl":null,"url":null,"abstract":"<div><p>A comprehensive literature review in seismic analysis<span><span> of free-spanning offshore pipelines (FSOPs) reveals that two critical aspects, i.e. the offshore earthquake motions and various uncertainty sources, have been normally ignored in numerous previous studies. Specifically, the offshore pipelines are usually modeled by assuming all the structural parameters to be fixed and are excited using the onshore earthquake motions. Such analytical schemes may result in severe misestimates of </span>seismic response<span> predictions of FSOPs. In this paper, a probabilistic approach<span><span> is developed for numerically investigating the seismic responses and failure mechanisms of FSOPs subjected to the offshore spatial earthquake motions (Off-SEMs). For this purpose, a buried offshore pipeline of API X65 with a free span of 30 m is selected and the corresponding three-dimensional finite element (3D FE) model is established in the ABAQUS software, where the soil–pipe and water–pipe interactions are modeled using the nonlinear soil springs and added mass and damping methods, respectively. Then, the three-dimensional Off-SEMs are stochastically synthesized by explicitly considering the effects of spatial variability and overlying seawater. Next, the general law of dynamic responses and failure modes of FSOPs subjected to the Off-SEMs is analyzed and summarized by the deterministic dynamic analysis. Defining the earthquake motions, structural modeling and soil properties as uncertain sources, the relative sensitivity of </span>seismic behaviors<span> to uncertain parameters involved in these uncertain sources is identified separately by the sensitivity analysis. Finally, uncertainty analysis is performed to examine and discuss the influence of different types of uncertainty sources on the seismic behaviors of FSOPs. Numerical results indicate that the pipeline diameter has the highest influence on the seismic behaviors of FSOPs, while the Poisson’s ratio of pipeline material has the smallest effect; uncertainties in earthquake motions, structural modeling and soil properties have significant contributions to the dynamic characteristics and seismic behaviors.</span></span></span></span></p></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"179 ","pages":"Article 109566"},"PeriodicalIF":6.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823122003706","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
A comprehensive literature review in seismic analysis of free-spanning offshore pipelines (FSOPs) reveals that two critical aspects, i.e. the offshore earthquake motions and various uncertainty sources, have been normally ignored in numerous previous studies. Specifically, the offshore pipelines are usually modeled by assuming all the structural parameters to be fixed and are excited using the onshore earthquake motions. Such analytical schemes may result in severe misestimates of seismic response predictions of FSOPs. In this paper, a probabilistic approach is developed for numerically investigating the seismic responses and failure mechanisms of FSOPs subjected to the offshore spatial earthquake motions (Off-SEMs). For this purpose, a buried offshore pipeline of API X65 with a free span of 30 m is selected and the corresponding three-dimensional finite element (3D FE) model is established in the ABAQUS software, where the soil–pipe and water–pipe interactions are modeled using the nonlinear soil springs and added mass and damping methods, respectively. Then, the three-dimensional Off-SEMs are stochastically synthesized by explicitly considering the effects of spatial variability and overlying seawater. Next, the general law of dynamic responses and failure modes of FSOPs subjected to the Off-SEMs is analyzed and summarized by the deterministic dynamic analysis. Defining the earthquake motions, structural modeling and soil properties as uncertain sources, the relative sensitivity of seismic behaviors to uncertain parameters involved in these uncertain sources is identified separately by the sensitivity analysis. Finally, uncertainty analysis is performed to examine and discuss the influence of different types of uncertainty sources on the seismic behaviors of FSOPs. Numerical results indicate that the pipeline diameter has the highest influence on the seismic behaviors of FSOPs, while the Poisson’s ratio of pipeline material has the smallest effect; uncertainties in earthquake motions, structural modeling and soil properties have significant contributions to the dynamic characteristics and seismic behaviors.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.