A solution set analysis of a nonlinear operator equation using a Leray–Schauder type fixed point approach

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.017
Anatoliy K. Prykarpatsky , Denis Blackmore
{"title":"A solution set analysis of a nonlinear operator equation using a Leray–Schauder type fixed point approach","authors":"Anatoliy K. Prykarpatsky ,&nbsp;Denis Blackmore","doi":"10.1016/j.top.2009.11.017","DOIUrl":null,"url":null,"abstract":"<div><p>Here we study the solution set of a nonlinear operator equation in a Banach subspace <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> by reducing it to a Leray–Schauder type fixed point problem. The subspace <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is of finite codimension <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> in <span><math><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>, with <span><math><mi>X</mi></math></span> an infinite compact Hausdorff space, and is defined by conditions <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mstyle><mi>d</mi></mstyle><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>f</mi><mo>∈</mo><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>, with norms <span><math><mrow><mo>‖</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>‖</mo></mrow><mo>=</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 182-185"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.017","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Here we study the solution set of a nonlinear operator equation in a Banach subspace LnC(X) by reducing it to a Leray–Schauder type fixed point problem. The subspace Ln is of finite codimension nZ+ in C(X), with X an infinite compact Hausdorff space, and is defined by conditions αi(f)Xf(x)dμi(x)=0,fC(X), with norms μi=1,i=1,,n.

用Leray-Schauder不动点法分析非线性算子方程的解集
本文研究了Banach子空间Ln∧C(X)中的非线性算子方程的解集,将其简化为Leray-Schauder型不动点问题。在C(X)中,子空间Ln具有有限余维n∈Z+,其中X是一个无限紧Hausdorff空间,由条件αi∗(f)中∫Xf(X) dμi(X) =0,f∈C(X),范数‖μi‖=1,i=1,…,n定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信