The spectra of algebras of Lorch analytic mappings

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.006
Luiza A. Moraes, Alex F. Pereira
{"title":"The spectra of algebras of Lorch analytic mappings","authors":"Luiza A. Moraes,&nbsp;Alex F. Pereira","doi":"10.1016/j.top.2009.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>For a complex Banach algebra <span><math><mi>E</mi></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></math></span> be the space of the mappings from <span><math><mi>E</mi></math></span> into <span><math><mi>E</mi></math></span> that are analytic in the sense of Lorch. We will show that <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></math></span> is a closed subalgebra of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>E</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></math></span> and we will give a description of its spectrum. As an application we will show that <span><math><mi>E</mi></math></span> is semi-simple if and only if <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>L</mi></mrow></msub><mrow><mo>(</mo><mi>E</mi><mo>)</mo></mrow></math></span> is semi-simple. We will also give descriptions of the spectra of other algebras of analytic mappings in the sense of Lorch. In particular we will study the spectrum of the Banach algebra <span><math><msubsup><mrow><mi>H</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msubsup><mrow><mo>(</mo><mstyle><mi>int</mi></mstyle><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>)</mo></mrow></math></span> of the bounded mappings from <span><math><mstyle><mi>int</mi></mstyle><mspace></mspace><msub><mrow><mi>B</mi></mrow><mrow><mi>E</mi></mrow></msub></math></span> into <span><math><mi>E</mi></math></span> that are analytic in the sense of Lorch.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 91-99"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.006","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For a complex Banach algebra E, let HL(E) be the space of the mappings from E into E that are analytic in the sense of Lorch. We will show that HL(E) is a closed subalgebra of Hb(E,E) and we will give a description of its spectrum. As an application we will show that E is semi-simple if and only if HL(E) is semi-simple. We will also give descriptions of the spectra of other algebras of analytic mappings in the sense of Lorch. In particular we will study the spectrum of the Banach algebra HL(intBE) of the bounded mappings from intBE into E that are analytic in the sense of Lorch.

Lorch解析映射的代数谱
对于复Banach代数E,设HL(E)为从E到E的映射的空间,这些映射在Lorch意义上是解析的。我们将证明HL(E)是Hb(E,E)的闭子代数,并给出其谱的描述。作为一个应用,我们将证明E是半简单的当且仅当HL(E)是半简单的。我们也将给出在洛赫意义下的其他解析映射代数的谱的描述。特别地,我们将研究从inbe到E的有界映射在Lorch意义上是解析的Banach代数HL∞(intBE)的谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信