Daniel Carando , Domingo García , Manuel Maestre , Pablo Sevilla-Peris
{"title":"A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions","authors":"Daniel Carando , Domingo García , Manuel Maestre , Pablo Sevilla-Peris","doi":"10.1016/j.top.2009.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we give general conditions on a countable family <span><math><mi>V</mi></math></span> of weights on an unbounded open set <span><math><mi>U</mi></math></span> in a complex Banach space <span><math><mi>X</mi></math></span> such that the weighted space <span><math><mi>H</mi><mi>V</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></math></span> of holomorphic functions on <span><math><mi>U</mi></math></span> has a Fréchet algebra structure. For such weights it is shown that the spectrum of <span><math><mi>H</mi><mi>V</mi><mrow><mo>(</mo><mi>U</mi><mo>)</mo></mrow></math></span> has a natural analytic manifold structure when <span><math><mi>X</mi></math></span> is a symmetrically regular Banach space, and in particular when <span><math><mi>X</mi><mo>=</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 54-65"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.003","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we give general conditions on a countable family of weights on an unbounded open set in a complex Banach space such that the weighted space of holomorphic functions on has a Fréchet algebra structure. For such weights it is shown that the spectrum of has a natural analytic manifold structure when is a symmetrically regular Banach space, and in particular when .