An application of Newton–Puiseux charts to the Jacobian problem

Topology Pub Date : 2008-11-01 DOI:10.1016/j.top.2008.04.001
Henryk Żołądek
{"title":"An application of Newton–Puiseux charts to the Jacobian problem","authors":"Henryk Żołądek","doi":"10.1016/j.top.2008.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>We study 2-dimensional Jacobian maps using so-called Newton–Puiseux charts. These are multi-valued coordinates near divisors of resolutions of indeterminacies at infinity of the Jacobian map in the source space as well as in the target space. The map expressed in these charts takes a very simple form, which allows us to detect a series of new analytical and topological properties. We prove that the Jacobian Conjecture holds true for maps <span><math><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow></math></span> whose topological degree is <span><math><mo>≤</mo><mn>5</mn></math></span>, for maps with <span><math><mo>gcd</mo><mrow><mo>(</mo><mo>deg</mo><mi>f</mi><mo>,</mo><mo>deg</mo><mi>g</mi><mo>)</mo></mrow><mo>≤</mo><mn>16</mn></math></span> and for maps with. <span><math><mo>gcd</mo><mrow><mo>(</mo><mo>deg</mo><mi>f</mi><mo>,</mo><mo>deg</mo><mi>g</mi><mo>)</mo></mrow></math></span> equal to 2 times a prime.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 6","pages":"Pages 431-469"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2008.04.001","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938308000207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We study 2-dimensional Jacobian maps using so-called Newton–Puiseux charts. These are multi-valued coordinates near divisors of resolutions of indeterminacies at infinity of the Jacobian map in the source space as well as in the target space. The map expressed in these charts takes a very simple form, which allows us to detect a series of new analytical and topological properties. We prove that the Jacobian Conjecture holds true for maps (f,g) whose topological degree is 5, for maps with gcd(degf,degg)16 and for maps with. gcd(degf,degg) equal to 2 times a prime.

牛顿-普塞图在雅可比问题中的应用
我们使用所谓的牛顿-普塞图来研究二维雅可比图。这些是雅可比矩阵在源空间和目标空间中无限远处的不确定性分辨率的除数附近的多值坐标。这些图表中表示的映射采用非常简单的形式,这使我们能够检测到一系列新的分析和拓扑性质。证明了雅可比猜想对于拓扑度≤5的映射(f,g),对于gcd(degf,degg)≤16的映射,对于具有。Gcd (degf,degg)等于2乘以一撇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信