Homotopy exponents of mod2r Moore spaces

Topology Pub Date : 2008-11-01 DOI:10.1016/j.top.2007.09.002
Stephen D. Theriault
{"title":"Homotopy exponents of mod2r Moore spaces","authors":"Stephen D. Theriault","doi":"10.1016/j.top.2007.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>⋅</mo><msub><mrow><mi>π</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></math></span> provided <span><math><mi>m</mi><mo>≥</mo><mn>4</mn></math></span> and <span><math><mi>r</mi><mo>≥</mo><mn>6</mn></math></span>. This is the best possible result. As well, for <span><math><mn>2</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mn>5</mn></math></span> we obtain upper bounds on the homotopy exponent of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 6","pages":"Pages 369-398"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.09.002","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We prove that 2r+1π(Pm(2r))=0 provided m4 and r6. This is the best possible result. As well, for 2r5 we obtain upper bounds on the homotopy exponent of Pm(2r).

mod2r摩尔空间的同伦指数
我们证明了当m≥4且r≥6时,2r+1⋅π (Pm(2r))=0。这是最好的结果。同样,对于2≤r≤5,我们得到了Pm(2r)的同伦指数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信