Strongly invertible links and divides

Topology Pub Date : 2008-09-01 DOI:10.1016/j.top.2007.09.001
Olivier Couture
{"title":"Strongly invertible links and divides","authors":"Olivier Couture","doi":"10.1016/j.top.2007.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>To a proper generic immersion of a finite number of copies of the unit interval in a 2-disc, called a divide, A’Campo associates a link in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. From the more general notion of ordered Morse signed divides, one obtains a braid presentation of links of divides. In this paper, we prove that every strongly invertible link is isotopic to the link of an ordered Morse signed divide. We give fundamental moves for ordered Morse signed divides and show that strongly invertible links are equivalent if and only if we can pass from one ordered Morse signed divide to the other by a sequence of such moves. Then we associate a polynomial to an ordered Morse signed divide, invariant for these moves. So this polynomial is invariant for the equivalence of strongly invertible links.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 5","pages":"Pages 316-350"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.09.001","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004093830700064X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To a proper generic immersion of a finite number of copies of the unit interval in a 2-disc, called a divide, A’Campo associates a link in S3. From the more general notion of ordered Morse signed divides, one obtains a braid presentation of links of divides. In this paper, we prove that every strongly invertible link is isotopic to the link of an ordered Morse signed divide. We give fundamental moves for ordered Morse signed divides and show that strongly invertible links are equivalent if and only if we can pass from one ordered Morse signed divide to the other by a sequence of such moves. Then we associate a polynomial to an ordered Morse signed divide, invariant for these moves. So this polynomial is invariant for the equivalence of strongly invertible links.

强可逆连接和分割
a’campo在S3中使用了一个链接,将有限数量的单位间隔复制到一个2-disc中,称为divide。从有序莫尔斯符号除法的更一般的概念,我们得到了除法链的辫子表示。本文证明了每一个强可逆环都是有序摩尔斯符号除法环的同位素。我们给出了有序莫尔斯符号除法的基本步,并证明了强可逆环是等价的当且仅当我们能通过一系列这样的步从一个有序莫尔斯符号除法传递到另一个有序莫尔斯符号除法。然后我们将多项式与有序莫尔斯符号除法联系起来,对于这些移动是不变的。所以这个多项式对于强可逆连杆的等价是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信