Complex hyperbolic Fenchel–Nielsen coordinates

Topology Pub Date : 2008-03-01 DOI:10.1016/j.top.2007.08.001
John R. Parker, Ioannis D. Platis
{"title":"Complex hyperbolic Fenchel–Nielsen coordinates","authors":"John R. Parker,&nbsp;Ioannis D. Platis","doi":"10.1016/j.top.2007.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>Σ</mi></math></span> be a closed, orientable surface of genus <span><math><mi>g</mi></math></span>. It is known that the <span><math><mstyle><mi>SU</mi></mstyle><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> representation variety of <span><math><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>Σ</mi><mo>)</mo></mrow></math></span> has <span><math><mn>2</mn><mi>g</mi><mo>−</mo><mn>3</mn></math></span> components of (real) dimension <span><math><mn>16</mn><mi>g</mi><mo>−</mo><mn>16</mn></math></span> and two components of dimension <span><math><mn>8</mn><mi>g</mi><mo>−</mo><mn>6</mn></math></span>. Of special interest are the totally loxodromic, faithful (that is quasi-Fuchsian) representations. In this paper we give global real analytic coordinates on a subset of the representation variety that contains the quasi-Fuchsian representations. These coordinates are a natural generalisation of Fenchel–Nielsen coordinates on the Teichmüller space of <span><math><mi>Σ</mi></math></span> and complex Fenchel–Nielsen coordinates on the (classical) quasi-Fuchsian space of <span><math><mi>Σ</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 2","pages":"Pages 101-135"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.08.001","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Let Σ be a closed, orientable surface of genus g. It is known that the SU(2,1) representation variety of π1(Σ) has 2g3 components of (real) dimension 16g16 and two components of dimension 8g6. Of special interest are the totally loxodromic, faithful (that is quasi-Fuchsian) representations. In this paper we give global real analytic coordinates on a subset of the representation variety that contains the quasi-Fuchsian representations. These coordinates are a natural generalisation of Fenchel–Nielsen coordinates on the Teichmüller space of Σ and complex Fenchel–Nielsen coordinates on the (classical) quasi-Fuchsian space of Σ.

复双曲fenchelnielsen坐标
设Σ为g属的一个封闭的、可定向的曲面。已知π1(Σ)的SU(2,1)表示变量有2g−3个实数维度16g−16的分量和2个实数维度8g−6的分量。特别令人感兴趣的是完全形似的、忠实的(即准富克斯式的)表现。本文给出了包含拟fuchsian表示的表示簇子集上的全局实解析坐标。这些坐标是Σ的teichmller空间上的fenchell - nielsen坐标和Σ的(经典的)准fuchsian空间上的复fenchell - nielsen坐标的自然推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信