3-manifolds which are orbit spaces of diffeomorphisms

Topology Pub Date : 2008-03-01 DOI:10.1016/j.top.2007.06.003
C. Bonatti, L. Paoluzzi
{"title":"3-manifolds which are orbit spaces of diffeomorphisms","authors":"C. Bonatti,&nbsp;L. Paoluzzi","doi":"10.1016/j.top.2007.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In a very general setting, we show that a 3-manifold obtained as the orbit space of the basin of a topological attractor is either <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> or irreducible.</p><p>We then study in more detail the topology of a class of 3-manifolds which are also orbit spaces and arise as invariants of gradient-like diffeomorphisms (in dimension 3). Up to a finite number of exceptions, which we explicitly describe, all these manifolds are Haken and, by changing the diffeomorphism by a finite power, all the Seifert components of the Jaco–Shalen–Johannson decomposition of these manifolds are made into product circle bundles.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 2","pages":"Pages 71-100"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.06.003","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In a very general setting, we show that a 3-manifold obtained as the orbit space of the basin of a topological attractor is either S2×S1 or irreducible.

We then study in more detail the topology of a class of 3-manifolds which are also orbit spaces and arise as invariants of gradient-like diffeomorphisms (in dimension 3). Up to a finite number of exceptions, which we explicitly describe, all these manifolds are Haken and, by changing the diffeomorphism by a finite power, all the Seifert components of the Jaco–Shalen–Johannson decomposition of these manifolds are made into product circle bundles.

3流形是微分同态的轨道空间
在非常一般的情况下,我们证明了作为拓扑吸引子盆的轨道空间的3流形是S2×S1或不可约的。然后,我们更详细地研究了一类3-流形的拓扑结构,这些3-流形也是轨道空间,并且作为类梯度微分同态的不变量(在3维中)出现。在我们明确描述的有限数量的例外情况下,所有这些流形都是Haken的,并且通过有限次幂改变微分同态,这些流形的Jaco-Shalen-Johannson分解的所有Seifert分量都被制作成积圆束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信