Homology at infinity; fractal geometry of limiting symbols for modular subgroups

Topology Pub Date : 2007-09-01 DOI:10.1016/j.top.2007.03.004
M. Kesseböhmer , B.O. Stratmann
{"title":"Homology at infinity; fractal geometry of limiting symbols for modular subgroups","authors":"M. Kesseböhmer ,&nbsp;B.O. Stratmann","doi":"10.1016/j.top.2007.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we use fractal geometry to investigate boundary aspects of the first homology group for finite coverings of the modular surface. We obtain a complete description of algebraically invisible parts of this homology group. More precisely, we first show that for any modular subgroup the geodesic forward dynamic on the associated surface admits a canonical symbolic representation by a finitely irreducible shift space. We then use this representation to derive a complete multifractal description of the higher-dimensional level sets arising from the Manin–Marcolli limiting modular symbols.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 5","pages":"Pages 469-491"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.03.004","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004093830700016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we use fractal geometry to investigate boundary aspects of the first homology group for finite coverings of the modular surface. We obtain a complete description of algebraically invisible parts of this homology group. More precisely, we first show that for any modular subgroup the geodesic forward dynamic on the associated surface admits a canonical symbolic representation by a finitely irreducible shift space. We then use this representation to derive a complete multifractal description of the higher-dimensional level sets arising from the Manin–Marcolli limiting modular symbols.

无穷远处的同调;模子群极限符号的分形几何
本文利用分形几何研究了模曲面有限复盖的第一同调群的边界方面。我们得到了这个同调群代数上不可见部分的完整描述。更确切地说,我们首先证明了对于任意模子群,关联曲面上的测地线正动态可以用有限不可约的位移空间表示正则符号。然后,我们利用该表示导出了由马尼-马科利极限模符号引起的高维水平集的完整多重分形描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信