{"title":"The diffeomorphism groups of the real line are pairwise bihomeomorphic","authors":"Taras Banakh , Tatsuhiko Yagasaki","doi":"10.1016/j.top.2009.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>For an <span><math><mi>r</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>∞</mi></math></span>, by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span> we denote respectively the groups of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, orientation-preserving <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, and compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology and the Whitney <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology. We prove that all the triples <span><math><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>∞</mi></math></span>, are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of <span><math><mi>R</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 119-129"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.010","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
For an , by , , we denote respectively the groups of diffeomorphisms, orientation-preserving diffeomorphisms, and compactly supported diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open topology and the Whitney topology. We prove that all the triples , , are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of .