Manifolds obtained by surgery on an infinite number of knots in S3

Topology Pub Date : 2006-07-01 DOI:10.1016/j.top.2006.02.001
John K. Osoinach Jr.
{"title":"Manifolds obtained by surgery on an infinite number of knots in S3","authors":"John K. Osoinach Jr.","doi":"10.1016/j.top.2006.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of 3-manifolds via Dehn surgery on links in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is an important technique in the classification of 3-manifolds. This paper describes a method of constructing infinite collections of distinct hyperbolic knots in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> which admit a longitudinal surgery yielding the same manifold. In one case, the knots constructed each admit a longitudinal surgery yielding the same hyperbolic manifold; in another case, the knots admit a longitudinal surgery yielding the same toroidal manifold. This answers a question formulated by Kirby in the Kirby problem list [R. Kirby (Ed.), Problems in low-dimensional topology, in: Geometric Topology, American Mathematical Society/International Press, 1997] in the affirmative, which asks if there is a homology 3-sphere, or any 3-manifold, that can be obtained by <span><math><mi>n</mi></math></span> surgery on an infinite number of distinct knots.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 4","pages":"Pages 725-733"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.02.001","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

The construction of 3-manifolds via Dehn surgery on links in S3 is an important technique in the classification of 3-manifolds. This paper describes a method of constructing infinite collections of distinct hyperbolic knots in S3 which admit a longitudinal surgery yielding the same manifold. In one case, the knots constructed each admit a longitudinal surgery yielding the same hyperbolic manifold; in another case, the knots admit a longitudinal surgery yielding the same toroidal manifold. This answers a question formulated by Kirby in the Kirby problem list [R. Kirby (Ed.), Problems in low-dimensional topology, in: Geometric Topology, American Mathematical Society/International Press, 1997] in the affirmative, which asks if there is a homology 3-sphere, or any 3-manifold, that can be obtained by n surgery on an infinite number of distinct knots.

在S3中无限数量的结上手术得到的流形
在S3上用Dehn手术构造3-流形是3-流形分类的一项重要技术。本文描述了一种构造S3中允许产生相同流形的纵向手术的不同双曲结的无限集合的方法。在一种情况下,每个结都允许纵向手术产生相同的双曲流形;在另一种情况下,这些节允许纵向手术产生相同的环形歧管。这回答了Kirby在Kirby问题列表[R]中提出的一个问题。Kirby(主编),《低维拓扑中的问题》,载于:几何拓扑,美国数学学会/国际出版社,1997]in the affirmative,其中询问是否存在一个同调的3球,或任何3流形,可以通过对无限数量的不同结进行n次手术得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信