Three models for the homotopy theory of homotopy theories

Topology Pub Date : 2007-09-01 DOI:10.1016/j.top.2007.03.002
Julia E. Bergner
{"title":"Three models for the homotopy theory of homotopy theories","authors":"Julia E. Bergner","doi":"10.1016/j.top.2007.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Given any model category, or more generally any category with weak equivalences, its simplicial localization is a simplicial category which can rightfully be called the “homotopy theory” of the model category. There is a model category structure on the category of simplicial categories, so taking its simplicial localization yields a “homotopy theory of homotopy theories”. In this paper we show that there are two different categories of diagrams of simplicial sets, each equipped with an appropriate definition of weak equivalence, such that the resulting homotopy theories are each equivalent to the homotopy theory arising from the model category structure on simplicial categories. Thus, any of these three categories with the respective weak equivalences could be considered a model for the homotopy theory of homotopy theories. One of them in particular, Rezk’s complete Segal space model category structure on the category of simplicial spaces, is much more convenient from the perspective of making calculations and therefore obtaining information about a given homotopy theory.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 4","pages":"Pages 397-436"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.03.002","citationCount":"147","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 147

Abstract

Given any model category, or more generally any category with weak equivalences, its simplicial localization is a simplicial category which can rightfully be called the “homotopy theory” of the model category. There is a model category structure on the category of simplicial categories, so taking its simplicial localization yields a “homotopy theory of homotopy theories”. In this paper we show that there are two different categories of diagrams of simplicial sets, each equipped with an appropriate definition of weak equivalence, such that the resulting homotopy theories are each equivalent to the homotopy theory arising from the model category structure on simplicial categories. Thus, any of these three categories with the respective weak equivalences could be considered a model for the homotopy theory of homotopy theories. One of them in particular, Rezk’s complete Segal space model category structure on the category of simplicial spaces, is much more convenient from the perspective of making calculations and therefore obtaining information about a given homotopy theory.

同伦理论中的同伦理论的三个模型
给定任何模型范畴,或者更一般地说,任何具有弱等价的范畴,它的简单局部化就是一个简单范畴,可以恰如其分地称之为模型范畴的“同伦论”。简单范畴的范畴上存在一个模型范畴结构,取其简单局部化得到“同伦理论的同伦理论”。本文证明了有两种不同类别的简单集合图,每一类图都配有一个适当的弱等价的定义,使得所得到的同伦理论都等价于由简单范畴上的模型范畴结构所产生的同伦理论。因此,这三个具有各自弱等价的范畴中的任何一个都可以被认为是同伦理论的同伦理论的模型。其中,Rezk在简单空间范畴上的完备Segal空间模型范畴结构,从计算从而获得给定同伦理论的信息的角度来说,要方便得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信