Elliptic triangle groups in PU(2,1), Lagrangian triples and momentum maps

Topology Pub Date : 2007-03-01 DOI:10.1016/j.top.2007.01.002
Julien Paupert
{"title":"Elliptic triangle groups in PU(2,1), Lagrangian triples and momentum maps","authors":"Julien Paupert","doi":"10.1016/j.top.2007.01.002","DOIUrl":null,"url":null,"abstract":"<div><p>We determine the possible eigenvalues of elliptic matrices <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>,</mo><mi>C</mi></math></span> in <span><math><mi>P</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> satisfying <span><math><mi>A</mi><mi>B</mi><mi>C</mi><mo>=</mo><mn>1</mn></math></span>. This is done by describing geometrically the image of a group-valued momentum map for the (non-compact) group action of <span><math><mi>P</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> by conjugation on <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are fixed elliptic conjugacy classes in <span><math><mi>P</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>. Contrary to the compact case, this image is not always convex; rather it is the union of one, two or three convex polygons in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The main motivation was to analyze elliptic triangle groups in <span><math><mi>P</mi><mi>U</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span> such as Mostow’s lattices.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 155-183"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.01.002","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We determine the possible eigenvalues of elliptic matrices A,B,C in PU(2,1) satisfying ABC=1. This is done by describing geometrically the image of a group-valued momentum map for the (non-compact) group action of PU(2,1) by conjugation on C1×C2 where C1 and C2 are fixed elliptic conjugacy classes in PU(2,1). Contrary to the compact case, this image is not always convex; rather it is the union of one, two or three convex polygons in T2/S2. The main motivation was to analyze elliptic triangle groups in PU(2,1) such as Mostow’s lattices.

PU(2,1)中的椭圆三角形群、拉格朗日三元组与动量映射
我们确定了PU(2,1)中满足ABC=1的椭圆矩阵A,B,C的可能特征值。这是通过在C1×C2上共轭描述PU(2,1)的(非紧化)群作用的群值动量映射的几何图像来实现的,其中C1和C2是PU(2,1)中的固定椭圆共轭类。与紧的情况相反,这个图像并不总是凸的;而是T2/S2中一个、两个或三个凸多边形的并集。主要动机是分析PU(2,1)中的椭圆三角形群,如Mostow格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信