Symplectic symmetries of 4-manifolds

Topology Pub Date : 2007-03-01 DOI:10.1016/j.top.2006.12.003
Weimin Chen , Slawomir Kwasik
{"title":"Symplectic symmetries of 4-manifolds","authors":"Weimin Chen ,&nbsp;Slawomir Kwasik","doi":"10.1016/j.top.2006.12.003","DOIUrl":null,"url":null,"abstract":"<div><p>A study of symplectic actions of a finite group <span><math><mi>G</mi></math></span> on smooth 4-manifolds is initiated. The central new idea is the use of <span><math><mi>G</mi></math></span>-equivariant Seiberg–Witten–Taubes theory in studying the structure of the fixed-point set of these symmetries. The main result in this paper is a complete description of the fixed-point set structure (and the action around it) of a symplectic cyclic action of prime order on a minimal symplectic 4-manifold with <span><math><msubsup><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mn>0</mn></math></span>. Comparison of this result with the case of locally linear topological actions is made. As an application of these considerations, the triviality of many such actions on a large class of 4-manifolds is established. In particular, we show the triviality of homologically trivial symplectic symmetries of a <span><math><mi>K</mi><mn>3</mn></math></span> surface (in analogy with holomorphic automorphisms). Various examples and comments illustrating our considerations are also included.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 103-128"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.12.003","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A study of symplectic actions of a finite group G on smooth 4-manifolds is initiated. The central new idea is the use of G-equivariant Seiberg–Witten–Taubes theory in studying the structure of the fixed-point set of these symmetries. The main result in this paper is a complete description of the fixed-point set structure (and the action around it) of a symplectic cyclic action of prime order on a minimal symplectic 4-manifold with c12=0. Comparison of this result with the case of locally linear topological actions is made. As an application of these considerations, the triviality of many such actions on a large class of 4-manifolds is established. In particular, we show the triviality of homologically trivial symplectic symmetries of a K3 surface (in analogy with holomorphic automorphisms). Various examples and comments illustrating our considerations are also included.

4-流形的辛对称性
研究了光滑4流形上有限群G的辛作用。中心的新思想是使用g等变Seiberg-Witten-Taubes理论来研究这些对称的不动点集的结构。本文的主要结果是完整地描述了c12=0的极小辛4流形上一个素数阶辛循环作用的不动点集结构(及其周围的作用)。并将此结果与局部线性拓扑作用的情况进行了比较。作为这些考虑的一个应用,在一类大的4-流形上建立了许多这类作用的平凡性。特别地,我们证明了K3曲面的同调平凡辛对称的平凡性(类比于全纯自同构)。还包括说明我们的考虑的各种示例和注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信