Boundaries of cocompact proper CAT(0) spaces

Topology Pub Date : 2007-03-01 DOI:10.1016/j.top.2006.12.002
Ross Geoghegan, Pedro Ontaneda
{"title":"Boundaries of cocompact proper CAT(0) spaces","authors":"Ross Geoghegan,&nbsp;Pedro Ontaneda","doi":"10.1016/j.top.2006.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>A proper CAT(0) metric space <span><math><mi>X</mi></math></span> is <em>cocompact</em> if it has a compact generating domain with respect to its full isometry group. Any proper CAT(0) space, cocompact or not, has a compact metrizable boundary at infinity <span><math><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>X</mi></math></span>; indeed, up to homeomorphism, this boundary is arbitrary. However, cocompactness imposes restrictions on what the boundary can be. Swenson showed that the boundary of a cocompact <span><math><mi>X</mi></math></span> has to be finite-dimensional. Here we show more: the dimension of <span><math><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>X</mi></math></span> has to be equal to the global Čech cohomological dimension of <span><math><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>X</mi></math></span>. For example: a compact manifold with non-empty boundary cannot be <span><math><msub><mrow><mi>∂</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>X</mi></math></span> with <span><math><mi>X</mi></math></span> cocompact. We include two consequences of this topological/geometric fact: (1) The dimension of the boundary is a quasi-isometry invariant of CAT(0) groups. (2) Geodesic segments in a cocompact <span><math><mi>X</mi></math></span> can “almost” be extended to geodesic rays, i.e. <span><math><mi>X</mi></math></span> is almost geodesically complete.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 129-137"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.12.002","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004093830600067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

A proper CAT(0) metric space X is cocompact if it has a compact generating domain with respect to its full isometry group. Any proper CAT(0) space, cocompact or not, has a compact metrizable boundary at infinity X; indeed, up to homeomorphism, this boundary is arbitrary. However, cocompactness imposes restrictions on what the boundary can be. Swenson showed that the boundary of a cocompact X has to be finite-dimensional. Here we show more: the dimension of X has to be equal to the global Čech cohomological dimension of X. For example: a compact manifold with non-empty boundary cannot be X with X cocompact. We include two consequences of this topological/geometric fact: (1) The dimension of the boundary is a quasi-isometry invariant of CAT(0) groups. (2) Geodesic segments in a cocompact X can “almost” be extended to geodesic rays, i.e. X is almost geodesically complete.

紧实固有CAT(0)空间的边界
一个固有的CAT(0)度量空间X是紧致的,如果它相对于它的全等距群有紧致的生成域。任何适当的CAT(0)空间,无论是否紧致,在无穷∂∞X处都有一个紧致的可度量边界;事实上,直到同胚,这个边界是任意的。然而,紧致性对边界可以是什么施加了限制。Swenson证明了紧化X的边界必须是有限维的。这里我们展示更多:∂∞X的维数必须等于∂∞X的全局Čech上同调维数。例如:具有非空边界的紧流形不能是∂∞X与X紧。我们给出了这一拓扑/几何事实的两个结果:(1)边界的维数是CAT(0)群的拟等距不变量。(2)紧致X中的测地线线段可以“几乎”扩展为测地线射线,即X几乎是测地线完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信