The length of a shortest geodesic net on a closed Riemannian manifold

Topology Pub Date : 2007-09-01 DOI:10.1016/j.top.2006.10.003
Regina Rotman
{"title":"The length of a shortest geodesic net on a closed Riemannian manifold","authors":"Regina Rotman","doi":"10.1016/j.top.2006.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we will estimate the smallest length of a minimal geodesic net on an arbitrary closed Riemannian manifold <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> in terms of the diameter of this manifold and its dimension. Minimal geodesic nets are critical points of the length functional on the space of immersed graphs into a Riemannian manifold. We prove that there exists a minimal geodesic net that consists of <span><math><mi>m</mi></math></span> geodesics connecting two points <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of total length <span><math><mo>≤</mo><mi>m</mi><mi>d</mi></math></span>, where <span><math><mi>m</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and <span><math><mi>d</mi></math></span> is the diameter of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We also show that there exists a minimal geodesic net with at most <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> vertices and <span><math><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> geodesic segments of total length <span><math><mo>≤</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mstyle><mi>FillRad</mi></mstyle><mspace></mspace><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≤</mo><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><msqrt><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mi>!</mi></mrow></msqrt><mstyle><mi>vol</mi></mstyle><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></math></span>.</p><p>These results significantly improve one of the results of [A. Nabutovsky, R. Rotman, The minimal length of a closed geodesic net on a Riemannian manifold with a nontrivial second homology group, Geom. Dedicata 113 (2005) 234–254] as well as most of the results of [A. Nabutovsky, R. Rotman, Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal. 14 (4) (2004) 748–790].</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 4","pages":"Pages 343-356"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.10.003","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper we will estimate the smallest length of a minimal geodesic net on an arbitrary closed Riemannian manifold Mn in terms of the diameter of this manifold and its dimension. Minimal geodesic nets are critical points of the length functional on the space of immersed graphs into a Riemannian manifold. We prove that there exists a minimal geodesic net that consists of m geodesics connecting two points p,qMn of total length md, where m{2,,(n+1)} and d is the diameter of Mn. We also show that there exists a minimal geodesic net with at most n+1 vertices and (n+1)(n+2)2 geodesic segments of total length (n+1)(n+2)FillRadMn(n+1)2nn(n+2)(n+1)!vol(Mn)1n.

These results significantly improve one of the results of [A. Nabutovsky, R. Rotman, The minimal length of a closed geodesic net on a Riemannian manifold with a nontrivial second homology group, Geom. Dedicata 113 (2005) 234–254] as well as most of the results of [A. Nabutovsky, R. Rotman, Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal. 14 (4) (2004) 748–790].

封闭黎曼流形上最短测地线网的长度
本文将根据任意闭黎曼流形Mn的直径及其维数来估计该流形上最小测地线网的最小长度。最小测地线网是浸没图在黎曼流形空间上的长度泛函的临界点。我们证明了存在一个极小测地线网,由m条测地线组成,该网连接两点p,q∈Mn,且总长度≤md,其中m∈{2,…,(n+1)}, d为Mn的直径。我们还证明了存在一个最小测地线网,该网最多有n+1个顶点,且(n+1)(n+2)2个测地线段的总长度≤(n+1)(n+2)FillRadMn≤(n+1)2nn(n+2)(n+1)!vol(Mn)1n。这些结果显著改善了[A.]纳布托夫斯基,R.罗特曼,黎曼流形上具有非平凡第二同调群的封闭测地网的最小长度,Geom。[A] .文献综述[A] .文献综述]。Nabutovsky, R. Rotman,固定1周期的体积、直径和最小质量,地球。功能。书刊。14(4)(2004)748-790]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信