Little cubes and long knots

Topology Pub Date : 2007-01-01 DOI:10.1016/j.top.2006.09.001
Ryan Budney
{"title":"Little cubes and long knots","authors":"Ryan Budney","doi":"10.1016/j.top.2006.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives a partial description of the homotopy type of <span><math><mi>K</mi></math></span>, the space of long knots in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The primary result is the construction of a homotopy equivalence <span><math><mi>K</mi><mo>≃</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>⊔</mo><mrow><mo>{</mo><mo>∗</mo><mo>}</mo></mrow><mo>)</mo></mrow></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>⊔</mo><mrow><mo>{</mo><mo>∗</mo><mo>}</mo></mrow><mo>)</mo></mrow></math></span> is the free little 2-cubes object on the pointed space <span><math><mi>P</mi><mo>⊔</mo><mrow><mo>{</mo><mo>∗</mo><mo>}</mo></mrow></math></span>, where <span><math><mi>P</mi><mo>⊂</mo><mi>K</mi></math></span> is the subspace of prime knots, and <span><math><mo>∗</mo></math></span> is a disjoint base-point. In proving the freeness result, a close correspondence is discovered between the Jaco–Shalen–Johannson decomposition of knot complements and the little cubes action on <span><math><mi>K</mi></math></span>. Beyond studying long knots in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> we show that for any compact manifold <span><math><mi>M</mi></math></span> the space of embeddings of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>M</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>M</mi></math></span> with support in <span><math><msup><mrow><mstyle><mi>I</mi></mstyle></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>M</mi></math></span> admits an action of the operad of little <span><math><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-cubes. If <span><math><mi>M</mi><mo>=</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> this embedding space is the space of framed long <span><math><mi>n</mi></math></span>-knots in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></math></span>, and the action of the little cubes operad is an enrichment of the monoid structure given by the connected-sum operation.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 1","pages":"Pages 1-27"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.09.001","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

This paper gives a partial description of the homotopy type of K, the space of long knots in R3. The primary result is the construction of a homotopy equivalence KC2(P{}) where C2(P{}) is the free little 2-cubes object on the pointed space P{}, where PK is the subspace of prime knots, and is a disjoint base-point. In proving the freeness result, a close correspondence is discovered between the Jaco–Shalen–Johannson decomposition of knot complements and the little cubes action on K. Beyond studying long knots in R3 we show that for any compact manifold M the space of embeddings of Rn×M in Rn×M with support in In×M admits an action of the operad of little (n+1)-cubes. If M=Dk this embedding space is the space of framed long n-knots in Rn+k, and the action of the little cubes operad is an enrichment of the monoid structure given by the connected-sum operation.

小方块和长结
本文给出了R3中长结空间K的同伦型的部分描述。主要结果是构造一个同伦等价K≃C2(P≠{∗}),其中C2(P≠{∗})是点空间P≠{∗}上的自由小2-立方体物体,其中P≠K是素数结点的子空间,并且∗是一个不相交的基点。在证明自由结果时,发现了结补的Jaco-Shalen-Johannson分解与k上的小立方作用之间的密切对应关系。除了研究R3中的长结,我们证明了对于任何紧化流形M,在Rn×M中Rn×M与In×M中支持的嵌入空间允许小(n+1)立方的操作作用。如果M=Dk,则嵌入空间是Rn+k中的框架长n节空间,并且小立方体操作的作用是由连通和操作给出的单类结构的丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信