{"title":"Little cubes and long knots","authors":"Ryan Budney","doi":"10.1016/j.top.2006.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper gives a partial description of the homotopy type of <span><math><mi>K</mi></math></span>, the space of long knots in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The primary result is the construction of a homotopy equivalence <span><math><mi>K</mi><mo>≃</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>⊔</mo><mrow><mo>{</mo><mo>∗</mo><mo>}</mo></mrow><mo>)</mo></mrow></math></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>P</mi><mo>⊔</mo><mrow><mo>{</mo><mo>∗</mo><mo>}</mo></mrow><mo>)</mo></mrow></math></span> is the free little 2-cubes object on the pointed space <span><math><mi>P</mi><mo>⊔</mo><mrow><mo>{</mo><mo>∗</mo><mo>}</mo></mrow></math></span>, where <span><math><mi>P</mi><mo>⊂</mo><mi>K</mi></math></span> is the subspace of prime knots, and <span><math><mo>∗</mo></math></span> is a disjoint base-point. In proving the freeness result, a close correspondence is discovered between the Jaco–Shalen–Johannson decomposition of knot complements and the little cubes action on <span><math><mi>K</mi></math></span>. Beyond studying long knots in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> we show that for any compact manifold <span><math><mi>M</mi></math></span> the space of embeddings of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>M</mi></math></span> in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>M</mi></math></span> with support in <span><math><msup><mrow><mstyle><mi>I</mi></mstyle></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><mi>M</mi></math></span> admits an action of the operad of little <span><math><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-cubes. If <span><math><mi>M</mi><mo>=</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>k</mi></mrow></msup></math></span> this embedding space is the space of framed long <span><math><mi>n</mi></math></span>-knots in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mi>k</mi></mrow></msup></math></span>, and the action of the little cubes operad is an enrichment of the monoid structure given by the connected-sum operation.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 1","pages":"Pages 1-27"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.09.001","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
Abstract
This paper gives a partial description of the homotopy type of , the space of long knots in . The primary result is the construction of a homotopy equivalence where is the free little 2-cubes object on the pointed space , where is the subspace of prime knots, and is a disjoint base-point. In proving the freeness result, a close correspondence is discovered between the Jaco–Shalen–Johannson decomposition of knot complements and the little cubes action on . Beyond studying long knots in we show that for any compact manifold the space of embeddings of in with support in admits an action of the operad of little -cubes. If this embedding space is the space of framed long -knots in , and the action of the little cubes operad is an enrichment of the monoid structure given by the connected-sum operation.