{"title":"Integrals of equivariant forms and a Gauss–Bonnet theorem for constructible sheaves","authors":"Matvei Libine","doi":"10.1016/j.top.2006.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Berline–Vergne integral localization formula for equivariantly closed forms ([N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539–541], Theorem 7.11 in [N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992]) is well-known and requires the acting Lie group to be compact. In this article, we extend this result to real reductive Lie groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>.</p><p>As an application of this generalization, we prove an analogue of the Gauss–Bonnet theorem for constructible sheaves. If <span><math><mi>F</mi></math></span> is a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>-equivariant sheaf on a complex projective manifold <span><math><mi>M</mi></math></span>, then the Euler characteristic of <span><math><mi>M</mi></math></span> with respect to <span><math><mi>F</mi></math></span><span><span><span><math><mi>χ</mi><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo></mrow></mrow><mrow><munder><mrow><mo>dim</mo></mrow><mrow><mi>C</mi></mrow></munder><mi>M</mi></mrow></msup></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mstyle><mi>Ch</mi></mstyle><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></msub><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></msub></mrow><mrow><mo>˜</mo></mrow></mover></math></span></span></span> as distributions on <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, where <span><math><mstyle><mi>Ch</mi></mstyle><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></math></span> is the characteristic cycle of <span><math><mi>F</mi></math></span> and <span><math><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></msub></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the Euler form of <span><math><mi>M</mi></math></span> extended to the cotangent space <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>M</mi></math></span> (independently of <span><math><mi>F</mi></math></span>). We also consider an analogue of Duistermaat–Heckman measures for real reductive Lie groups acting on symplectic manifolds.</p><p>In [M. Libine, Riemann–Roch–Hirzebruch integral formula for characters of reductive Lie groups, Represent. Theory 9 (2005) 507–524. Also <span>math.RT/0312454</span><svg><path></path></svg>] I apply the results of this article to obtain a Riemann–Roch–Hirzebruch type integral formula for characters of representations of reductive groups.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 1","pages":"Pages 1-39"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.07.001","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The Berline–Vergne integral localization formula for equivariantly closed forms ([N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539–541], Theorem 7.11 in [N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992]) is well-known and requires the acting Lie group to be compact. In this article, we extend this result to real reductive Lie groups .
As an application of this generalization, we prove an analogue of the Gauss–Bonnet theorem for constructible sheaves. If is a -equivariant sheaf on a complex projective manifold , then the Euler characteristic of with respect to as distributions on , where is the characteristic cycle of and is the Euler form of extended to the cotangent space (independently of ). We also consider an analogue of Duistermaat–Heckman measures for real reductive Lie groups acting on symplectic manifolds.
In [M. Libine, Riemann–Roch–Hirzebruch integral formula for characters of reductive Lie groups, Represent. Theory 9 (2005) 507–524. Also math.RT/0312454] I apply the results of this article to obtain a Riemann–Roch–Hirzebruch type integral formula for characters of representations of reductive groups.