The Thurston norm, fibered manifolds and twisted Alexander polynomials

Topology Pub Date : 2006-11-01 DOI:10.1016/j.top.2006.06.003
Stefan Friedl , Taehee Kim
{"title":"The Thurston norm, fibered manifolds and twisted Alexander polynomials","authors":"Stefan Friedl ,&nbsp;Taehee Kim","doi":"10.1016/j.top.2006.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Every element in the first cohomology group of a 3-manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3-sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Turaev. Our bounds attain their most concise form when interpreted as the degrees of the Reidemeister torsion of a certain twisted chain complex. We show that these lower bounds give the correct genus bounds for all knots with 12 crossings or less, including the Conway knot and the Kinoshita–Terasaka knot which have trivial Alexander polynomial.</p><p>We also give obstructions to fibering 3-manifolds using twisted Alexander polynomials and detect all knots with 12 crossings or less that are not fibered. For some of these it was unknown whether or not they are fibered. Our work in particular extends the fibering obstructions of Cha to the case of closed manifolds.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 6","pages":"Pages 929-953"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.06.003","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

Every element in the first cohomology group of a 3-manifold is dual to embedded surfaces. The Thurston norm measures the minimal ‘complexity’ of such surfaces. For instance the Thurston norm of a knot complement determines the genus of the knot in the 3-sphere. We show that the degrees of twisted Alexander polynomials give lower bounds on the Thurston norm, generalizing work of McMullen and Turaev. Our bounds attain their most concise form when interpreted as the degrees of the Reidemeister torsion of a certain twisted chain complex. We show that these lower bounds give the correct genus bounds for all knots with 12 crossings or less, including the Conway knot and the Kinoshita–Terasaka knot which have trivial Alexander polynomial.

We also give obstructions to fibering 3-manifolds using twisted Alexander polynomials and detect all knots with 12 crossings or less that are not fibered. For some of these it was unknown whether or not they are fibered. Our work in particular extends the fibering obstructions of Cha to the case of closed manifolds.

瑟斯顿范数,纤维流形和扭曲亚历山大多项式
3流形的第一上同调群中的每一个元素都对偶于内嵌曲面。瑟斯顿范数测量这些表面的最小“复杂性”。例如,结补的瑟斯顿范数决定了结在3球中的属。推广了McMullen和Turaev的工作,证明了扭曲亚历山大多项式的度给出了Thurston范数的下界。当把我们的界解释为某个扭曲链复合体的赖德迈斯特扭转度时,我们的界得到了最简洁的形式。我们证明了这些下界给出了所有有12个或更少交叉点的结的正确格界,包括具有平凡Alexander多项式的Conway结和kinoshata - terasaka结。我们还使用扭曲的亚历山大多项式给出了成纤维3流形的障碍,并检测了所有具有12个或更少的未成纤维的结。其中一些还不知道它们是否含有纤维。我们的工作特别将Cha的纤维障碍扩展到闭合流形的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信