A topological view of Gromov–Witten theory

Topology Pub Date : 2006-09-01 DOI:10.1016/j.top.2006.06.002
D. Maulik, R. Pandharipande
{"title":"A topological view of Gromov–Witten theory","authors":"D. Maulik,&nbsp;R. Pandharipande","doi":"10.1016/j.top.2006.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>We study relative Gromov–Witten theory via universal relations provided by the degeneration and localization formulas. We find relative Gromov–Witten theory is completely determined by absolute Gromov–Witten theory. The relationship between the relative and absolute theories is guided by a strong analogy to classical topology.</p><p>As an outcome, we present a mathematical determination of the Gromov–Witten invariants (in all genera) of the Calabi–Yau quintic 3-fold in terms of known theories.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 5","pages":"Pages 887-918"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.06.002","citationCount":"161","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 161

Abstract

We study relative Gromov–Witten theory via universal relations provided by the degeneration and localization formulas. We find relative Gromov–Witten theory is completely determined by absolute Gromov–Witten theory. The relationship between the relative and absolute theories is guided by a strong analogy to classical topology.

As an outcome, we present a mathematical determination of the Gromov–Witten invariants (in all genera) of the Calabi–Yau quintic 3-fold in terms of known theories.

Gromov-Witten理论的拓扑学观点
通过退化和局部化公式提供的普遍关系,研究了相对的Gromov-Witten理论。我们发现相对Gromov-Witten理论完全由绝对Gromov-Witten理论决定。相对理论和绝对理论之间的关系是由对经典拓扑的强烈类比所指导的。作为一个结果,我们提出了一个数学确定的Gromov-Witten不变量(在所有属)的Calabi-Yau五次三倍根据已知的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信