{"title":"New obstructions to doubly slicing knots","authors":"Taehee Kim","doi":"10.1016/j.top.2005.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>A knot in the 3-sphere is called doubly slice if it is a slice of an unknotted 2-sphere in the 4-sphere. We give a bi-sequence of new obstructions for a knot being doubly slice. We construct it following the idea of Cochran-Orr-Teichner's filtration of the classical knot concordance group. This yields a bi-filtration of the monoid of knots (under the connected sum operation) indexed by pairs of half integers. Doubly slice knots lie in the intersection of this bi-filtration. We construct examples of knots which illustrate the non-triviality of this bi-filtration at all levels. In particular, these are new examples of algebraically doubly slice knots that are not doubly slice, and many of these knots are slice. Cheeger-Gromov's von Neumann rho invariants play a key role to show non-triviality of this bi-filtration. We also show some classical invariants are reflected at the initial levels of this bi-filtration, and obtain a bi-filtration of the double concordance group.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 543-566"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.11.005","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938305000972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
A knot in the 3-sphere is called doubly slice if it is a slice of an unknotted 2-sphere in the 4-sphere. We give a bi-sequence of new obstructions for a knot being doubly slice. We construct it following the idea of Cochran-Orr-Teichner's filtration of the classical knot concordance group. This yields a bi-filtration of the monoid of knots (under the connected sum operation) indexed by pairs of half integers. Doubly slice knots lie in the intersection of this bi-filtration. We construct examples of knots which illustrate the non-triviality of this bi-filtration at all levels. In particular, these are new examples of algebraically doubly slice knots that are not doubly slice, and many of these knots are slice. Cheeger-Gromov's von Neumann rho invariants play a key role to show non-triviality of this bi-filtration. We also show some classical invariants are reflected at the initial levels of this bi-filtration, and obtain a bi-filtration of the double concordance group.