New obstructions to doubly slicing knots

Topology Pub Date : 2006-05-01 DOI:10.1016/j.top.2005.11.005
Taehee Kim
{"title":"New obstructions to doubly slicing knots","authors":"Taehee Kim","doi":"10.1016/j.top.2005.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>A knot in the 3-sphere is called doubly slice if it is a slice of an unknotted 2-sphere in the 4-sphere. We give a bi-sequence of new obstructions for a knot being doubly slice. We construct it following the idea of Cochran-Orr-Teichner's filtration of the classical knot concordance group. This yields a bi-filtration of the monoid of knots (under the connected sum operation) indexed by pairs of half integers. Doubly slice knots lie in the intersection of this bi-filtration. We construct examples of knots which illustrate the non-triviality of this bi-filtration at all levels. In particular, these are new examples of algebraically doubly slice knots that are not doubly slice, and many of these knots are slice. Cheeger-Gromov's von Neumann rho invariants play a key role to show non-triviality of this bi-filtration. We also show some classical invariants are reflected at the initial levels of this bi-filtration, and obtain a bi-filtration of the double concordance group.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 543-566"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.11.005","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938305000972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A knot in the 3-sphere is called doubly slice if it is a slice of an unknotted 2-sphere in the 4-sphere. We give a bi-sequence of new obstructions for a knot being doubly slice. We construct it following the idea of Cochran-Orr-Teichner's filtration of the classical knot concordance group. This yields a bi-filtration of the monoid of knots (under the connected sum operation) indexed by pairs of half integers. Doubly slice knots lie in the intersection of this bi-filtration. We construct examples of knots which illustrate the non-triviality of this bi-filtration at all levels. In particular, these are new examples of algebraically doubly slice knots that are not doubly slice, and many of these knots are slice. Cheeger-Gromov's von Neumann rho invariants play a key role to show non-triviality of this bi-filtration. We also show some classical invariants are reflected at the initial levels of this bi-filtration, and obtain a bi-filtration of the double concordance group.

新的障碍,双重切片结
如果3球中的一个结是未结的2球在4球中的一个切片,则称为双切片。给出了双切片结的新障碍的双序列。我们按照Cochran-Orr-Teichner对经典结调和群的过滤思想来构造它。这就产生了一个由半整数对索引的结点单群的双过滤(在连通和操作下)。双切片结位于双过滤的交叉处。我们构造了一些结点的例子来说明这种双重过滤在所有层次上的非琐屑性。特别地,这些是代数上的双切片结的新例子它们不是双切片,而且很多结都是切片。Cheeger-Gromov的von Neumann不变量在显示这种双过滤的非平凡性方面发挥了关键作用。我们还证明了一些经典不变量反映在这种双过滤的初始水平上,并得到了双一致性群的一个双过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信