{"title":"Crosscap numbers of 2-bridge knots","authors":"Mikami Hirasawa , Masakazu Teragaito","doi":"10.1016/j.top.2005.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>We present a practical algorithm to determine the minimal genus of non-orientable spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 513-530"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.11.001","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938305000959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
We present a practical algorithm to determine the minimal genus of non-orientable spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).