{"title":"Closed 1-forms with at most one zero","authors":"M. Farber , D. Schütz","doi":"10.1016/j.top.2005.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that in any nonzero cohomology class <span><math><mi>ξ</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>M</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span> there always exists a closed 1-form having at most one zero.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 465-473"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.06.006","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938305000637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We prove that in any nonzero cohomology class there always exists a closed 1-form having at most one zero.