Xiaoqin Lu , Wai Kin Wong , Kin Chung Au-Yeung , Chun Wing Choy , Hui Yu
{"title":"Verification of tropical cyclones (TC) wind structure forecasts from global NWP models and ensemble prediction systems (EPSs)","authors":"Xiaoqin Lu , Wai Kin Wong , Kin Chung Au-Yeung , Chun Wing Choy , Hui Yu","doi":"10.1016/j.tcrr.2022.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasting wind structure of tropical cyclone (TC) is vital in assessment of impact due to high winds using Numerical Weather Prediction (NWP) model. The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field. However, precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast. In this study, the Method for Object-Based Diagnostic Evaluation (MODE), which has been widely adopted in verifying precipitation fields, is utilized in TC's wind field verification for the first time. The TC wind field forecast of deterministic NWP model and Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) over the western North Pacific and the South China Sea in 2020 were evaluated. A MODE score of 0.5 is used as a threshold value to represent a skillful (or good) forecast. It is found that the R34 (radius of 34 knots) wind field structure forecasts within 72 h are good regardless of DET or EPS. The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good, with MODE exceeded 0.5. The R64 forecast within 48 h are worth for reference as well with MODE of around 0.5. This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":"11 2","pages":"Pages 88-102"},"PeriodicalIF":2.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2225603222000145/pdfft?md5=6fae61dc045ce24fe776990a188082ec&pid=1-s2.0-S2225603222000145-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603222000145","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting wind structure of tropical cyclone (TC) is vital in assessment of impact due to high winds using Numerical Weather Prediction (NWP) model. The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field. However, precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast. In this study, the Method for Object-Based Diagnostic Evaluation (MODE), which has been widely adopted in verifying precipitation fields, is utilized in TC's wind field verification for the first time. The TC wind field forecast of deterministic NWP model and Ensemble Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) over the western North Pacific and the South China Sea in 2020 were evaluated. A MODE score of 0.5 is used as a threshold value to represent a skillful (or good) forecast. It is found that the R34 (radius of 34 knots) wind field structure forecasts within 72 h are good regardless of DET or EPS. The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good, with MODE exceeded 0.5. The R64 forecast within 48 h are worth for reference as well with MODE of around 0.5. This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones