Cavity quantum electrodynamics in application to plasmonics and metamaterials

Q1 Physics and Astronomy
Pavel Ginzburg
{"title":"Cavity quantum electrodynamics in application to plasmonics and metamaterials","authors":"Pavel Ginzburg","doi":"10.1016/j.revip.2016.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Frontier quantum engineering tasks require reliable control over light-matter interaction dynamics, which could be obtained by introducing electromagnetic structuring. Initiated by the Purcell's discovery of spontaneous emission acceleration in a cavity, the concept of electromagnetic modes' design have gained a considerable amount of attention due to development of photonic crystals, micro-resonators, plasmonic nanostructures and metamaterials. Those approaches, however, offer qualitatively different strategies for tailoring light-matter interactions and are based on either high quality factor modes shaping, near field control, or both. Remarkably, rigorous quantum mechanical description might address those processes in a different fashion. While traditional cavity quantum electrodynamics tools are commonly based on mode decomposition approach, few challenges rise once dispersive and lossy nanostructures, such as noble metals (plasmonic) antennas or metamaterials, are involved. The primary objective of this review is to introduce key methods and techniques while aiming to obtain comprehensive quantum mechanical description of spontaneous, stimulated and higher order emission and interaction processes, tailored by nanostructured material environment. The main challenge and the complexity here are set by the level of rigorousity, up to which materials should be treated. While relatively big nanostructured features (10<!--> <!-->nm and larger) could be addressed by applying fluctuation–dissipation theorem and corresponding Green functions' analysis, smaller objects will require individual approach. Effects of material granularity, spatial dispersion, tunneling over small gaps, material memory and others will be reviewed. Quantum phenomena, inspired and tailored by nanostructured environment, plays a key role in development of quantum information devices and related technologies. Rigorous analysis is required for both examination of experimental observations and prediction of new effects.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":"1 ","pages":"Pages 120-139"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2016.07.001","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428316300120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 52

Abstract

Frontier quantum engineering tasks require reliable control over light-matter interaction dynamics, which could be obtained by introducing electromagnetic structuring. Initiated by the Purcell's discovery of spontaneous emission acceleration in a cavity, the concept of electromagnetic modes' design have gained a considerable amount of attention due to development of photonic crystals, micro-resonators, plasmonic nanostructures and metamaterials. Those approaches, however, offer qualitatively different strategies for tailoring light-matter interactions and are based on either high quality factor modes shaping, near field control, or both. Remarkably, rigorous quantum mechanical description might address those processes in a different fashion. While traditional cavity quantum electrodynamics tools are commonly based on mode decomposition approach, few challenges rise once dispersive and lossy nanostructures, such as noble metals (plasmonic) antennas or metamaterials, are involved. The primary objective of this review is to introduce key methods and techniques while aiming to obtain comprehensive quantum mechanical description of spontaneous, stimulated and higher order emission and interaction processes, tailored by nanostructured material environment. The main challenge and the complexity here are set by the level of rigorousity, up to which materials should be treated. While relatively big nanostructured features (10 nm and larger) could be addressed by applying fluctuation–dissipation theorem and corresponding Green functions' analysis, smaller objects will require individual approach. Effects of material granularity, spatial dispersion, tunneling over small gaps, material memory and others will be reviewed. Quantum phenomena, inspired and tailored by nanostructured environment, plays a key role in development of quantum information devices and related technologies. Rigorous analysis is required for both examination of experimental observations and prediction of new effects.

腔量子电动力学在等离子体和超材料中的应用
前沿量子工程任务需要对光-物质相互作用动力学的可靠控制,这可以通过引入电磁结构来实现。由于光子晶体、微谐振器、等离子体纳米结构和超材料的发展,电磁模式设计的概念受到了相当多的关注。然而,这些方法为裁剪光-物质相互作用提供了质量不同的策略,并且基于高质量因子模式塑造,近场控制或两者兼而有之。值得注意的是,严格的量子力学描述可能会以一种不同的方式来解决这些过程。虽然传统的腔量子电动力学工具通常基于模式分解方法,但一旦涉及色散和有损纳米结构,如贵金属(等离子体)天线或超材料,就很少有挑战。本综述的主要目的是介绍关键的方法和技术,同时旨在获得根据纳米结构材料环境定制的自发、受激和高阶发射和相互作用过程的全面量子力学描述。这里的主要挑战和复杂性是由严格程度决定的,材料应该处理到什么程度。虽然相对较大的纳米结构特征(10纳米及更大)可以通过应用波动耗散定理和相应的格林函数分析来解决,但较小的物体将需要单独的方法。材料粒度的影响,空间分散,隧道在小间隙,材料记忆和其他将被审查。量子现象是由纳米结构环境激发和定制的,在量子信息器件及相关技术的发展中起着关键作用。对实验观察结果的检验和对新效应的预测都需要严格的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信