Propagation of Johnson-Cook flow stress model uncertainty to milling force uncertainty using finite element analysis and time domain simulation

Timothy No , Michael Gomez , Jaydeep Karandikar , Jarred Heigel , Ryan Copenhaver , Tony Schmitz
{"title":"Propagation of Johnson-Cook flow stress model uncertainty to milling force uncertainty using finite element analysis and time domain simulation","authors":"Timothy No ,&nbsp;Michael Gomez ,&nbsp;Jaydeep Karandikar ,&nbsp;Jarred Heigel ,&nbsp;Ryan Copenhaver ,&nbsp;Tony Schmitz","doi":"10.1016/j.promfg.2021.06.025","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the propagation of uncertainty in the parameters for a 6061-T6 aluminum Johnson-Cook flow stress model to, first, the uncertainty in the corresponding mechanistic cutting force model obtained by orthogonal cutting finite element simulation and, second, the milling force predicted by time domain simulation using the force model. The approach includes five key elements: 1) a literature review to identify the means and standard deviations for the 6061-T6 aluminum Johnson-Cook model parameters; 2) structured light scanning to measure an endmill’s cutting edge macro-geometry along the tool axis; 3) structured light scanning to identify the cutting edge cross-sectional rake and relief profiles for the same endmill; 4) orthogonal cutting finite element analysis to determine the mechanistic force model coefficients that relate the force components to chip area and width using the tool’s rake and relief profiles and random samples from the Johnson-Cook parameter distributions; and 5) time domain simulation with inputs that include the measured cutting edge macro-geometry, uncertain finite element-based force model, and measured structural dynamics. Distributions for milling force predictions are determined by Monte Carlo simulation and compared to in-process measurements for an indexable endmill-collet holder to demonstrate the approach. It is observed that 95% confidence intervals on the predicted forces bound the measured time-dependent force profile peaks in over half of the cases tested. It is also seen that the Johnson-Cook flow stress model-based force predictions performed as well as predictions based on a calibrated mechanistic force model.</p></div>","PeriodicalId":91947,"journal":{"name":"Procedia manufacturing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.promfg.2021.06.025","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2351978921000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes the propagation of uncertainty in the parameters for a 6061-T6 aluminum Johnson-Cook flow stress model to, first, the uncertainty in the corresponding mechanistic cutting force model obtained by orthogonal cutting finite element simulation and, second, the milling force predicted by time domain simulation using the force model. The approach includes five key elements: 1) a literature review to identify the means and standard deviations for the 6061-T6 aluminum Johnson-Cook model parameters; 2) structured light scanning to measure an endmill’s cutting edge macro-geometry along the tool axis; 3) structured light scanning to identify the cutting edge cross-sectional rake and relief profiles for the same endmill; 4) orthogonal cutting finite element analysis to determine the mechanistic force model coefficients that relate the force components to chip area and width using the tool’s rake and relief profiles and random samples from the Johnson-Cook parameter distributions; and 5) time domain simulation with inputs that include the measured cutting edge macro-geometry, uncertain finite element-based force model, and measured structural dynamics. Distributions for milling force predictions are determined by Monte Carlo simulation and compared to in-process measurements for an indexable endmill-collet holder to demonstrate the approach. It is observed that 95% confidence intervals on the predicted forces bound the measured time-dependent force profile peaks in over half of the cases tested. It is also seen that the Johnson-Cook flow stress model-based force predictions performed as well as predictions based on a calibrated mechanistic force model.

基于有限元分析和时域仿真的Johnson-Cook流变应力模型不确定性向铣削力不确定性的传递
本文描述了6061-T6铝合金Johnson-Cook流变应力模型参数的不确定性传递到:一是正交切削有限元模拟得到的相应切削力力学模型的不确定性,二是利用切削力模型进行时域仿真预测的铣削力。该方法包括五个关键要素:1)通过文献综述,确定6061-T6铝Johnson-Cook模型参数的均值和标准差;2)结构光扫描测量立铣刀沿刀轴的刃口宏观几何形状;3)结构光扫描识别同一立铣刀的切削刃横截面前刀和后刀轮廓;4)通过正交切削有限元分析,利用刀具的前倾和后倾轮廓以及Johnson-Cook参数分布的随机样本,确定力分量与切屑面积和切屑宽度相关的机械力模型系数;5)时域仿真,输入包括测量的前沿宏观几何、不确定有限元力模型和测量的结构动力学。铣削力预测的分布由蒙特卡罗模拟确定,并与可转位立铣刀夹头的过程测量进行比较,以证明该方法。可以观察到,在超过一半的测试案例中,预测力的95%置信区间约束了测量的随时间变化的力剖面峰值。此外,基于Johnson-Cook流动应力模型的力预测效果与基于校准的机械力模型的预测效果相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信