{"title":"Two-Phase Flows with Bulk–Surface Interaction: Thermodynamically Consistent Navier–Stokes–Cahn–Hilliard Models with Dynamic Boundary Conditions","authors":"Andrea Giorgini, Patrik Knopf","doi":"10.1007/s00021-023-00811-w","DOIUrl":null,"url":null,"abstract":"<div><p>We derive a novel thermodynamically consistent Navier–Stokes–Cahn–Hilliard system with dynamic boundary conditions. This model describes the motion of viscous incompressible binary fluids with different densities. In contrast to previous models in the literature, our new model allows for surface diffusion, a variable contact angle between the diffuse interface and the boundary, and mass transfer between bulk and surface. In particular, this transfer of material is subject to a mass conservation law including both a bulk and a surface contribution. The derivation is carried out by means of local energy dissipation laws and the Lagrange multiplier approach. Next, in the case of fluids with matched densities, we show the existence of global weak solutions in two and three dimensions as well as the uniqueness of weak solutions in two dimensions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00811-w.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00811-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
We derive a novel thermodynamically consistent Navier–Stokes–Cahn–Hilliard system with dynamic boundary conditions. This model describes the motion of viscous incompressible binary fluids with different densities. In contrast to previous models in the literature, our new model allows for surface diffusion, a variable contact angle between the diffuse interface and the boundary, and mass transfer between bulk and surface. In particular, this transfer of material is subject to a mass conservation law including both a bulk and a surface contribution. The derivation is carried out by means of local energy dissipation laws and the Lagrange multiplier approach. Next, in the case of fluids with matched densities, we show the existence of global weak solutions in two and three dimensions as well as the uniqueness of weak solutions in two dimensions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.