Xiaodong Yan , Hongni Wang , Wei Wang , Jinhan Xie , Yanyan Ren , Xinjun Wang
{"title":"Optimal model averaging forecasting in high-dimensional survival analysis","authors":"Xiaodong Yan , Hongni Wang , Wei Wang , Jinhan Xie , Yanyan Ren , Xinjun Wang","doi":"10.1016/j.ijforecast.2020.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers ultrahigh-dimensional forecasting problems with survival response variables. We propose a two-step model averaging procedure for improving the forecasting accuracy of the true conditional mean of a survival response variable. The first step is to construct a class of candidate models, each with low-dimensional covariates. For this, a feature screening procedure is developed to separate the active and inactive predictors through a marginal Buckley–James index, and to group covariates with a similar index size together to form regression models with survival response variables. The proposed screening method can select active predictors under covariate-dependent censoring, and enjoys sure screening consistency under mild regularity conditions. The second step is to find the optimal model weights for averaging by adapting a delete-one cross-validation criterion, without the standard constraint that the weights sum to one. The theoretical results show that the delete-one cross-validation criterion achieves the lowest possible forecasting loss asymptotically. Numerical studies demonstrate the superior performance of the proposed variable screening and model averaging procedures over existing methods.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"37 3","pages":"Pages 1147-1155"},"PeriodicalIF":6.9000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijforecast.2020.12.004","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207020301904","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 10
Abstract
This article considers ultrahigh-dimensional forecasting problems with survival response variables. We propose a two-step model averaging procedure for improving the forecasting accuracy of the true conditional mean of a survival response variable. The first step is to construct a class of candidate models, each with low-dimensional covariates. For this, a feature screening procedure is developed to separate the active and inactive predictors through a marginal Buckley–James index, and to group covariates with a similar index size together to form regression models with survival response variables. The proposed screening method can select active predictors under covariate-dependent censoring, and enjoys sure screening consistency under mild regularity conditions. The second step is to find the optimal model weights for averaging by adapting a delete-one cross-validation criterion, without the standard constraint that the weights sum to one. The theoretical results show that the delete-one cross-validation criterion achieves the lowest possible forecasting loss asymptotically. Numerical studies demonstrate the superior performance of the proposed variable screening and model averaging procedures over existing methods.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.