Comparing the Digoxin Test With the Architect®i1000 sr System With Respect to the AxSYM® System

E. Albert Vicent, R. Ferriols Lisart, M.A. Roch Ventura, M. Alós Almiñana
{"title":"Comparing the Digoxin Test With the Architect®i1000 sr System With Respect to the AxSYM® System","authors":"E. Albert Vicent,&nbsp;R. Ferriols Lisart,&nbsp;M.A. Roch Ventura,&nbsp;M. Alós Almiñana","doi":"10.1016/j.farmae.2011.02.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To assess the technique employed by the autoanalyser Architect<sup>®</sup> i1000<!--> <span>sr to determine digoxin in serum samples, compared with the assay developed for AsSYM</span><sup>®</sup><span> using microparticle enzyme immunoassay (Digoxin II).</span></p></div><div><h3>Method</h3><p>A prospective analysis of the samples from 100 requests to monitor patients being treated with digoxin. The samples were processed in AxSYM<sup>®</sup> and Architect<sup>®</sup>. The techniques were assessed using the linear regression coefficient, determination coefficient, mean absolute error, mean squared prediction error and the Bland-Altman method.</p></div><div><h3>Results</h3><p>The serum levels showed a correlation coefficient of 0.93. There was nearly a 40% difference for the concentrations between 0.8 and 2<!--> <!-->ng/ml and nearly 20% in the rest of the samples analysed.</p></div><div><h3>Conclusions</h3><p>The Architect<sup>®</sup> system is precise; however, from a clinical monitoring point of view, it is unacceptably inaccurate when compared with the AxSYM<sup>®</sup>.</p></div>","PeriodicalId":100521,"journal":{"name":"Farmacia Hospitalaria (English Edition)","volume":"35 5","pages":"Pages 256-259"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.farmae.2011.02.001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Farmacia Hospitalaria (English Edition)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2173508511000396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To assess the technique employed by the autoanalyser Architect® i1000 sr to determine digoxin in serum samples, compared with the assay developed for AsSYM® using microparticle enzyme immunoassay (Digoxin II).

Method

A prospective analysis of the samples from 100 requests to monitor patients being treated with digoxin. The samples were processed in AxSYM® and Architect®. The techniques were assessed using the linear regression coefficient, determination coefficient, mean absolute error, mean squared prediction error and the Bland-Altman method.

Results

The serum levels showed a correlation coefficient of 0.93. There was nearly a 40% difference for the concentrations between 0.8 and 2 ng/ml and nearly 20% in the rest of the samples analysed.

Conclusions

The Architect® system is precise; however, from a clinical monitoring point of view, it is unacceptably inaccurate when compared with the AxSYM®.

地高辛测试与Architect®i1000 sr系统与AxSYM®系统的比较
目的评价Architect®i1000 sr自动分析仪用于测定血清样本中地高辛的技术,并与AsSYM®使用微粒酶免疫分析法(地高辛II)开发的方法进行比较。方法对100例使用地高辛治疗的患者的监测样本进行前瞻性分析。样品在AxSYM®和Architect®中进行处理。采用线性回归系数、决定系数、平均绝对误差、均方预测误差和Bland-Altman方法对技术进行评价。结果血药浓度相关系数为0.93。在0.8和2纳克/毫升之间的浓度有近40%的差异,在分析的其他样品中有近20%的差异。Architect®系统是精确的;然而,从临床监测的角度来看,与AxSYM®相比,它是不可接受的不准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信