Exploring the energy landscape of a SAM-I riboswitch

IF 1.8 4区 生物学 Q3 BIOPHYSICS
Christoph Manz, Andrei Yu Kobitski, Ayan Samanta, Karin Nienhaus, Andres Jäschke, Gerd Ulrich Nienhaus
{"title":"Exploring the energy landscape of a SAM-I riboswitch","authors":"Christoph Manz,&nbsp;Andrei Yu Kobitski,&nbsp;Ayan Samanta,&nbsp;Karin Nienhaus,&nbsp;Andres Jäschke,&nbsp;Gerd Ulrich Nienhaus","doi":"10.1007/s10867-021-09584-7","DOIUrl":null,"url":null,"abstract":"<div><p>SAM-I riboswitches regulate gene expression through transcription termination upon binding a <i>S</i>-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length <i>Bacillus subtilis yitJ</i> SAM-I riboswitch as a function of Mg<sup>2+</sup> and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, <i>S</i>-adenosyl-<span>l</span>-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg<sup>2+</sup> concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated ‘hub’ state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10867-021-09584-7.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-021-09584-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

SAM-I riboswitches regulate gene expression through transcription termination upon binding a S-adenosyl-L-methionine (SAM) ligand. In previous work, we characterized the conformational energy landscape of the full-length Bacillus subtilis yitJ SAM-I riboswitch as a function of Mg2+ and SAM ligand concentrations. Here, we have extended this work with measurements on a structurally similar ligand, S-adenosyl-l-homocysteine (SAH), which has, however, a much lower binding affinity. Using single-molecule Förster resonance energy transfer (smFRET) microscopy and hidden Markov modeling (HMM) analysis, we identified major conformations and determined their fractional populations and dynamics. At high Mg2+ concentration, FRET analysis yielded four distinct conformations, which we assigned to two terminator and two antiterminator states. In the same solvent, but with SAM added at saturating concentrations, four states persisted, although their populations, lifetimes and interconversion dynamics changed. In the presence of SAH instead of SAM, HMM revealed again four well-populated states and, in addition, a weakly populated ‘hub’ state that appears to mediate conformational transitions between three of the other states. Our data show pronounced and specific effects of the SAM and SAH ligands on the RNA conformational energy landscape. Interestingly, both SAM and SAH shifted the fractional populations toward terminator folds, but only gradually, so the effect cannot explain the switching action. Instead, we propose that the noticeably accelerated dynamics of interconversion between terminator and antiterminator states upon SAM binding may be essential for control of transcription.

探索sam - 1核开关的能量格局
SAM- 1核开关通过与s -腺苷- l-蛋氨酸(SAM)配体结合后的转录终止来调节基因表达。在之前的工作中,我们表征了全长枯草芽孢杆菌yitJ SAM- 1核糖开关的构象能量景观,作为Mg2+和SAM配体浓度的函数。在这里,我们扩展了这项工作,测量了结构相似的配体,s -腺苷-l-同型半胱氨酸(SAH),然而,其结合亲和力要低得多。利用单分子Förster共振能量转移(smFRET)显微镜和隐马尔可夫模型(HMM)分析,我们确定了主要的构象,并确定了它们的分数种群和动力学。在高Mg2+浓度下,FRET分析产生了四种不同的构象,我们将其分配到两个终止态和两个反终止态。在相同的溶剂中,但以饱和浓度添加SAM,尽管它们的种群,寿命和相互转化动力学发生了变化,但仍然存在四种状态。在存在SAH而不是SAM的情况下,HMM再次揭示了四个密集状态,此外,还有一个弱密集的“枢纽”状态,它似乎调解了其他三个状态之间的构象转变。我们的数据显示了SAM和SAH配体对RNA构象能景观的明显和特定的影响。有趣的是,SAM和SAH都将分数种群向终止褶移动,但只是逐渐地,因此这种效应不能解释这种转换作用。相反,我们提出,在SAM结合时终止子和反终止子状态之间明显加速的相互转换动力学可能是控制转录的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信