Petr Miarka , Alejandro S. Cruces , Pablo Lopez-Crespo , Wouter De Corte
{"title":"Fracture process zone development and length assessment under the mixed-mode I/II load analysed by digital image correlation technique","authors":"Petr Miarka , Alejandro S. Cruces , Pablo Lopez-Crespo , Wouter De Corte","doi":"10.1016/j.cemconres.2023.107261","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, the fracture process zone (FPZ) of high-performance concrete (HPC) is investigated under mixed-mode I/II load conditions, and its formation is studied by applying digital image correlation (DIC). The experimental tests are performed on Brazilian disc specimens with central notch (BDCN). The traction-free crack and the FPZ extent ahead of the crack are localised. This is done by modification of the existing methodology for mode I cracks to account for various mixed-mode I/II loading conditions. Analytical and </span>linear elastic fracture<span> mechanics (LEFM) methods for the critical strain are used to find the FPZ extension. Lastly, this paper revisits the analytical formulas used in the prediction of mode I FPZ lengths. These formulas are adjusted to allow for the prediction of the FPZ length in the whole range of mixed-mode I/II load conditions. Experimental results show that the FPZ has a different size for various mixed-mode I/II load conditions.</span></p></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"173 ","pages":"Article 107261"},"PeriodicalIF":10.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884623001758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the fracture process zone (FPZ) of high-performance concrete (HPC) is investigated under mixed-mode I/II load conditions, and its formation is studied by applying digital image correlation (DIC). The experimental tests are performed on Brazilian disc specimens with central notch (BDCN). The traction-free crack and the FPZ extent ahead of the crack are localised. This is done by modification of the existing methodology for mode I cracks to account for various mixed-mode I/II loading conditions. Analytical and linear elastic fracture mechanics (LEFM) methods for the critical strain are used to find the FPZ extension. Lastly, this paper revisits the analytical formulas used in the prediction of mode I FPZ lengths. These formulas are adjusted to allow for the prediction of the FPZ length in the whole range of mixed-mode I/II load conditions. Experimental results show that the FPZ has a different size for various mixed-mode I/II load conditions.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.