Measuring tourism with big data? Empirical insights from comparing passive GPS data and passive mobile data

IF 4 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM
Dirk Schmücker , Julian Reif
{"title":"Measuring tourism with big data? Empirical insights from comparing passive GPS data and passive mobile data","authors":"Dirk Schmücker ,&nbsp;Julian Reif","doi":"10.1016/j.annale.2022.100061","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we aim to classify digital data sources for the measurement of tourist mobility, to establish a set of assessment indicators, and to compare two Big Data sources to gain empirical insights into how we can measure tourism with Big Data. For three holiday destinations in Germany, passive mobile data and passive global positioning systems (GPS) data are compared with reference data from the destinations for twelve weeks in the summer of 2019. Results show that mobile network data are on a plausible level compared to the local reference data and are able to predict the temporal pattern to a very high degree. GPS app-based data also perform well, but are less plausible and precise than mobile network data.</p></div>","PeriodicalId":34520,"journal":{"name":"Annals of Tourism Research Empirical Insights","volume":"3 2","pages":"Article 100061"},"PeriodicalIF":4.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666957922000295/pdfft?md5=35a9bd00014ac8075215ee7bfe534ac8&pid=1-s2.0-S2666957922000295-main.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Tourism Research Empirical Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666957922000295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we aim to classify digital data sources for the measurement of tourist mobility, to establish a set of assessment indicators, and to compare two Big Data sources to gain empirical insights into how we can measure tourism with Big Data. For three holiday destinations in Germany, passive mobile data and passive global positioning systems (GPS) data are compared with reference data from the destinations for twelve weeks in the summer of 2019. Results show that mobile network data are on a plausible level compared to the local reference data and are able to predict the temporal pattern to a very high degree. GPS app-based data also perform well, but are less plausible and precise than mobile network data.

用大数据衡量旅游业?通过比较被动GPS数据和被动移动数据得出的经验见解
本文旨在对衡量旅游流动性的数字数据源进行分类,建立一套评估指标,并对两个大数据来源进行比较,以获得如何用大数据衡量旅游业的实证见解。对于德国的三个度假目的地,被动移动数据和被动全球定位系统(GPS)数据与2019年夏季12周的目的地参考数据进行了比较。结果表明,与当地参考数据相比,移动网络数据在一个可信的水平上,能够在很大程度上预测时间格局。基于GPS应用程序的数据也表现良好,但不如移动网络数据可信和精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Tourism Research Empirical Insights
Annals of Tourism Research Empirical Insights Social Sciences-Sociology and Political Science
CiteScore
5.30
自引率
0.00%
发文量
44
审稿时长
106 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信