{"title":"Highly sensitive flexible heat flux sensor based on a microhole array for ultralow to high temperatures.","authors":"Le Li, Bian Tian, Zhongkai Zhang, Meng Shi, Jiangjiang Liu, Zhaojun Liu, Jiaming Lei, Shuimin Li, Qijing Lin, Libo Zhao, Zhuangde Jiang","doi":"10.1038/s41378-023-00599-9","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing demand for thermal management of electronic devices, cooling of high-precision instruments, and biological cryopreservation, heat flux measurement of complex surfaces and at ultralow temperatures has become highly imperative. However, current heat flux sensors (HFSs) are commonly used in high-temperature scenarios and have problems when applied in low-temperature conditions, such as low sensitivity and embrittlement. In this study, we developed a flexible and highly sensitive HFS that can operate at ultralow to high temperatures, ranging from -196 °C to 273 °C. The sensitivities of HFSs with thicknesses of 0.2 mm and 0.3 mm, which are efficiently manufactured by the screen-printing method, reach 11.21 μV/(W/m<sup>2</sup>) and 13.43 μV/(W/m<sup>2</sup>), respectively. The experimental results show that there is a less than 3% resistance change from bending to stretching. Additionally, the HFS can measure heat flux in both exothermic and absorptive cases and can measure heat flux up to 25 kW/m<sup>2</sup>. Additionally, we demonstrate the application of the HFS to the measurement of minuscule heat flux, such as heat dissipation of human skin and cold water. This technology is expected to be used in heat flux measurements at ultralow temperatures or on complex surfaces, which has great importance in the superconductor and cryobiology field.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"9 ","pages":"133"},"PeriodicalIF":7.3000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-023-00599-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing demand for thermal management of electronic devices, cooling of high-precision instruments, and biological cryopreservation, heat flux measurement of complex surfaces and at ultralow temperatures has become highly imperative. However, current heat flux sensors (HFSs) are commonly used in high-temperature scenarios and have problems when applied in low-temperature conditions, such as low sensitivity and embrittlement. In this study, we developed a flexible and highly sensitive HFS that can operate at ultralow to high temperatures, ranging from -196 °C to 273 °C. The sensitivities of HFSs with thicknesses of 0.2 mm and 0.3 mm, which are efficiently manufactured by the screen-printing method, reach 11.21 μV/(W/m2) and 13.43 μV/(W/m2), respectively. The experimental results show that there is a less than 3% resistance change from bending to stretching. Additionally, the HFS can measure heat flux in both exothermic and absorptive cases and can measure heat flux up to 25 kW/m2. Additionally, we demonstrate the application of the HFS to the measurement of minuscule heat flux, such as heat dissipation of human skin and cold water. This technology is expected to be used in heat flux measurements at ultralow temperatures or on complex surfaces, which has great importance in the superconductor and cryobiology field.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.