{"title":"Construction of L-type lectin displaying Saccharomyces cerevisiae for Vibrio parahaemolyticus agglutination.","authors":"Phuong-Thao Thi Nguyen, Thuan-Thien Dinh, Hieu Tran-Van","doi":"10.1007/s10123-023-00440-3","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of Aga1P anchor protein in the display system for expressing heterologous proteins on the surface of Saccharomyces cerevisiae has been shown to be an ideal approach. This system has the ability to improve the expression of target proteins beyond the cell surface, resulting in increased activity and stability of the expression system. Recent studies have demonstrated that a new L-type lectin from Litopenaeus vannamei (LvLTLC1) has been found to possess the capability of agglutinating Vibrio parahaemolyticus, a pathogen responsible for causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. In this study, LvLTLC1 protein was designed to be expressed on the surface of S. cerevisiae via Aga1P anchor. The expression of LvLTLC1 protein on the surface of S. cerevisiae::pYIP-LvLTLC1-Aga1P was confirmed through the use of analytical techniques including SDS-PAGE, dot blot, and fluorescent immunoassay with LvLTC1-specific antibody. Subsequently, the newly generated yeast strain was evaluated for its ability to agglutinate V. parahaemolyticus and A. hydrophila. The obtained results indicated that S. cerevisiae expressing LvLTLC1 protein on its surface had the ability to agglutinate both AHPND-causing V. parahaemolyticus and A. hydrophila. This newly generated yeast strain could be served as a feed supplement for controlling bacteria in general and AHPND in particular.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":"1-10"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00440-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of Aga1P anchor protein in the display system for expressing heterologous proteins on the surface of Saccharomyces cerevisiae has been shown to be an ideal approach. This system has the ability to improve the expression of target proteins beyond the cell surface, resulting in increased activity and stability of the expression system. Recent studies have demonstrated that a new L-type lectin from Litopenaeus vannamei (LvLTLC1) has been found to possess the capability of agglutinating Vibrio parahaemolyticus, a pathogen responsible for causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. In this study, LvLTLC1 protein was designed to be expressed on the surface of S. cerevisiae via Aga1P anchor. The expression of LvLTLC1 protein on the surface of S. cerevisiae::pYIP-LvLTLC1-Aga1P was confirmed through the use of analytical techniques including SDS-PAGE, dot blot, and fluorescent immunoassay with LvLTC1-specific antibody. Subsequently, the newly generated yeast strain was evaluated for its ability to agglutinate V. parahaemolyticus and A. hydrophila. The obtained results indicated that S. cerevisiae expressing LvLTLC1 protein on its surface had the ability to agglutinate both AHPND-causing V. parahaemolyticus and A. hydrophila. This newly generated yeast strain could be served as a feed supplement for controlling bacteria in general and AHPND in particular.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.