Evan J. van Aalst, Jun Jang, Ty C. Halligan, Benjamin J. Wylie
{"title":"Strategies for acquisition of resonance assignment spectra of highly dynamic membrane proteins: a GPCR case study","authors":"Evan J. van Aalst, Jun Jang, Ty C. Halligan, Benjamin J. Wylie","doi":"10.1007/s10858-023-00421-8","DOIUrl":null,"url":null,"abstract":"<div><p>In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T<sub>2</sub>’ experiments indicate sample temperatures below − 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T<sub>1</sub><sub>rho</sub> experiments indicate intermediate timescales are minimized below a sample temperature of − 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of − 30 °C, corroborated by linewidth analysis in 3D NCACX at − 30 °C compared to − 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between − 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"77 4","pages":"191 - 202"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-023-00421-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In protein nuclear magnetic resonance (NMR), chemical shift assignment provides a wealth of information. However, acquisition of high-quality solid-state NMR spectra depends on protein-specific dynamics. For membrane proteins, bilayer heterogeneity further complicates this observation. Since the efficiency of cross-polarization transfer is strongly entwined with protein dynamics, optimal temperatures for spectral sensitivity and resolution will depend not only on inherent protein dynamics, but temperature-dependent phase properties of the bilayer environment. We acquired 1-, 2-, and 3D homo- and heteronuclear experiments of the chemokine receptor CCR3 in a 7:3 phosphatidylcholine:cholesterol lipid environment. 1D direct polarization, cross polarization (CP), and T2’ experiments indicate sample temperatures below − 25 °C facilitate higher CP enhancement and longer-lived transverse relaxation times. T1rho experiments indicate intermediate timescales are minimized below a sample temperature of − 20 °C. 2D DCP NCA experiments indicated optimal CP efficiency and resolution at a sample temperature of − 30 °C, corroborated by linewidth analysis in 3D NCACX at − 30 °C compared to − 5 °C. This optimal temperature is concluded to be directly related the lipid phase transition, measured to be between − 20 and 15 °C based on rINEPT signal of all-trans and trans-gauche lipid acyl conformations. Our results have critical implications in acquisition of SSNMR membrane protein assignment spectra, as we hypothesize that different lipid compositions with different phase transition properties influence protein dynamics and therefore the optimal acquisition temperature.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.