Juan Chen, Jinghua Jiang, Jada Weber, Vianney Gimenez-Pinto* and Chenhui Peng*,
{"title":"Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami","authors":"Juan Chen, Jinghua Jiang, Jada Weber, Vianney Gimenez-Pinto* and Chenhui Peng*, ","doi":"10.1021/acsami.2c20295","DOIUrl":null,"url":null,"abstract":"<p >Programming shape changes in soft materials requires precise control of the directionality and magnitude of their mechanical response. Among ordered soft materials, liquid crystal elastomers (LCEs) exhibit remarkable and programmable shape shifting when their molecular order changes. In this work, we synthesized, remotely programmed, and modeled reversible and complex morphing in monolithic LCE kirigami encoded with predesigned topological patterns in its microstructure. We obtained a rich variety of out-of-plane shape transformations, including auxetic structures and undulating morphologies, by combining different topological microstructures and kirigami geometries. The spatiotemporal shape-shifting behaviors are well recapitulated by elastodynamics simulations, revealing that the complex shape changes arise from integrating the custom-cut geometry with local director profiles defined by topological defects inscribed in the material. Different functionalities, such as a bioinspired fluttering butterfly, a flower bud, dual-rotation light mills, and dual-mode locomotion, are further realized. Our proposed LCE kirigami with topological patterns opens opportunities for the future development of multifunctional devices for soft robotics, flexible electronics, and biomedicine.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 3","pages":"4538–4548"},"PeriodicalIF":8.2000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c20295","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Programming shape changes in soft materials requires precise control of the directionality and magnitude of their mechanical response. Among ordered soft materials, liquid crystal elastomers (LCEs) exhibit remarkable and programmable shape shifting when their molecular order changes. In this work, we synthesized, remotely programmed, and modeled reversible and complex morphing in monolithic LCE kirigami encoded with predesigned topological patterns in its microstructure. We obtained a rich variety of out-of-plane shape transformations, including auxetic structures and undulating morphologies, by combining different topological microstructures and kirigami geometries. The spatiotemporal shape-shifting behaviors are well recapitulated by elastodynamics simulations, revealing that the complex shape changes arise from integrating the custom-cut geometry with local director profiles defined by topological defects inscribed in the material. Different functionalities, such as a bioinspired fluttering butterfly, a flower bud, dual-rotation light mills, and dual-mode locomotion, are further realized. Our proposed LCE kirigami with topological patterns opens opportunities for the future development of multifunctional devices for soft robotics, flexible electronics, and biomedicine.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.