{"title":"Preparation and application of zeolite-zinc oxide nano composite for nitrate removal from groundwater","authors":"Temesgen Wedajo, Andualem Mekonnen, Tadesse Alemu","doi":"10.1007/s40201-023-00860-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nanomaterial assisted removal of pollutants from water has got great attention. This study aimed to remove nitrate from groundwater using zeolite and zeolite-ZnO nanocomposite as synergetic effect. Zeolite-ZnO nanocomposite was prepared using the co-precipitation method. The Physico-chemical characteristics of the nanomaterials were determined using XRD, SEM, and FTIR. The results revealed that; Zeolite-ZnO nanocomposites with 13.12 nm particle size have successfully been loaded into the zeolite. In addition, its chemical composition was determined using AAS. The removal efficiency of nitrate from groundwater was studied using a batch experiment. The removal of nitrate was investigated as a function of adsorbent dose, pH, initial concentration of nitrate, contact time, and agitation speed. Moreover, the adsorption isotherm and kinetics were also determined. The results showed that the removal of nitrate was 92% at an optimum dose of 0.5 g, pH 5, initial nitrate concentration of 50 mg/L, the contact time of 1 h, and agitation speed of 160 rpm. The removal nitrate has been fitted well by the Langmuir isotherm model with correlation coefficients of R<sup>2</sup> = 0.988. Thus, indicating the applicability of monolayer coverage of the nitrate ion on the surface of the nanocomposite. The adsorption process follows the pseudo-second-order model with a correlation coefficient of R<sup>2</sup> = 0.997. The results of this work might find application in remediation of water by removing nitrate to meet the standards of water quality.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"21 1","pages":"277 - 291"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-023-00860-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-023-00860-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterial assisted removal of pollutants from water has got great attention. This study aimed to remove nitrate from groundwater using zeolite and zeolite-ZnO nanocomposite as synergetic effect. Zeolite-ZnO nanocomposite was prepared using the co-precipitation method. The Physico-chemical characteristics of the nanomaterials were determined using XRD, SEM, and FTIR. The results revealed that; Zeolite-ZnO nanocomposites with 13.12 nm particle size have successfully been loaded into the zeolite. In addition, its chemical composition was determined using AAS. The removal efficiency of nitrate from groundwater was studied using a batch experiment. The removal of nitrate was investigated as a function of adsorbent dose, pH, initial concentration of nitrate, contact time, and agitation speed. Moreover, the adsorption isotherm and kinetics were also determined. The results showed that the removal of nitrate was 92% at an optimum dose of 0.5 g, pH 5, initial nitrate concentration of 50 mg/L, the contact time of 1 h, and agitation speed of 160 rpm. The removal nitrate has been fitted well by the Langmuir isotherm model with correlation coefficients of R2 = 0.988. Thus, indicating the applicability of monolayer coverage of the nitrate ion on the surface of the nanocomposite. The adsorption process follows the pseudo-second-order model with a correlation coefficient of R2 = 0.997. The results of this work might find application in remediation of water by removing nitrate to meet the standards of water quality.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene