Eunyeong Yang, Seoin Kang, Sanghyun Jeong, Kihyun Shin, Jung-Sub Wi, Joon Sik Park, Sangyeob Lee, Choong-Heui Chung
{"title":"Electrodeposited Hierarchical Silver Network Transparent Conducting Electrodes with Excellent Optoelectronic Properties and Mechanical Flexibility","authors":"Eunyeong Yang, Seoin Kang, Sanghyun Jeong, Kihyun Shin, Jung-Sub Wi, Joon Sik Park, Sangyeob Lee, Choong-Heui Chung","doi":"10.1007/s13391-023-00453-0","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanically flexible transparent conductive electrodes (TCEs) with high optoelectronic performance are essential for flexible or wearable optoelectronic devices, which are currently receiving a considerable amount of attention. In this study, we investigate the structural, electrical, optical and mechanical properties of electrodeposited hierarchical silver network TCEs consisting of two layers of silver nanowires (AgNWs) and a silver micromesh. Hierarchical structures are known to improve the optoelectronic properties of network-type TCEs. To fabricate an electrodeposited hierarchical network, a AgNW solution is first spun onto a substrate to form randomly distributed AgNWs, and a silver micromesh is then formed on the AgNWs. Subsequently, silver is electrodeposited onto the hierarchical network. As a result of the electrodeposition, AgNW-AgNW and AgNW-silver micromesh contacts are effectively welded, and the dimensions of the AgNWs and the silver micromesh are optimized to maximize the figure of merit of the TCE. Furthermore, the electrodeposited hierarchical silver network shows excellent mechanical flexibility and much less degradation of its sheet resistance than that experienced by ITO upon repeated convex and concave bending. Its resulting optoelectronic and mechanically flexible performance is superior to that of commercialized ITO.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"254 - 260"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00453-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanically flexible transparent conductive electrodes (TCEs) with high optoelectronic performance are essential for flexible or wearable optoelectronic devices, which are currently receiving a considerable amount of attention. In this study, we investigate the structural, electrical, optical and mechanical properties of electrodeposited hierarchical silver network TCEs consisting of two layers of silver nanowires (AgNWs) and a silver micromesh. Hierarchical structures are known to improve the optoelectronic properties of network-type TCEs. To fabricate an electrodeposited hierarchical network, a AgNW solution is first spun onto a substrate to form randomly distributed AgNWs, and a silver micromesh is then formed on the AgNWs. Subsequently, silver is electrodeposited onto the hierarchical network. As a result of the electrodeposition, AgNW-AgNW and AgNW-silver micromesh contacts are effectively welded, and the dimensions of the AgNWs and the silver micromesh are optimized to maximize the figure of merit of the TCE. Furthermore, the electrodeposited hierarchical silver network shows excellent mechanical flexibility and much less degradation of its sheet resistance than that experienced by ITO upon repeated convex and concave bending. Its resulting optoelectronic and mechanically flexible performance is superior to that of commercialized ITO.
期刊介绍:
Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.