{"title":"Rheological and microstructural properties of beef sausage batter formulated with fish fillet mince.","authors":"Ala Hashemi, Ali Jafarpour","doi":"10.1007/s13197-015-2052-4","DOIUrl":null,"url":null,"abstract":"<p><p>Rheological properties and microstructure of beef meat sausage batter, incorporated with different percentages of fish fillet mince (5 %, 20 %, 35 % and 50 %), were investigated and compared to the control (0 % fish). By increasing the proportion of fish fillet mince to the sausage formula up to 35 % and 50 %, hardness was increased by 40 % and 16 %, respectively, (P < 0.05), whereas, cohesiveness and springiness showed no significant differences (P > 0.05). In terms of temperature sweep test, storage modulus (G') of control sample faced a substantial slop from 10 °C to 58 °C, corresponding to the lowest magnitude of G' at its gelling point (~58°), but completed at around 70 °C, as same as the other treatments. Whereas the gelling point of batter sample with 50 % fish mince remained at nearly 42 °C, which was remarkably lowest among all treatments, indicating the better gel formation process. SEM micrographs revealed a previous orderly set gel before heating in all treatments whereas after heating up to 90 °C gel matrices became denser with more obvious granular pattern and aggregated structure, specifically in sample with 50 % fish mince. In conclusion, addition of fish mince up to 50 % into beef sausage formula, positively interacted in gel formation process, without diminishing its rheological properties. </p>","PeriodicalId":16004,"journal":{"name":"Journal of Food Science and Technology-mysore","volume":"53 1","pages":"601-10"},"PeriodicalIF":2.6000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Technology-mysore","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13197-015-2052-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rheological properties and microstructure of beef meat sausage batter, incorporated with different percentages of fish fillet mince (5 %, 20 %, 35 % and 50 %), were investigated and compared to the control (0 % fish). By increasing the proportion of fish fillet mince to the sausage formula up to 35 % and 50 %, hardness was increased by 40 % and 16 %, respectively, (P < 0.05), whereas, cohesiveness and springiness showed no significant differences (P > 0.05). In terms of temperature sweep test, storage modulus (G') of control sample faced a substantial slop from 10 °C to 58 °C, corresponding to the lowest magnitude of G' at its gelling point (~58°), but completed at around 70 °C, as same as the other treatments. Whereas the gelling point of batter sample with 50 % fish mince remained at nearly 42 °C, which was remarkably lowest among all treatments, indicating the better gel formation process. SEM micrographs revealed a previous orderly set gel before heating in all treatments whereas after heating up to 90 °C gel matrices became denser with more obvious granular pattern and aggregated structure, specifically in sample with 50 % fish mince. In conclusion, addition of fish mince up to 50 % into beef sausage formula, positively interacted in gel formation process, without diminishing its rheological properties.
期刊介绍:
The Journal of Food Science and Technology (JFST) is the official publication of the Association of Food Scientists and Technologists of India (AFSTI). This monthly publishes peer-reviewed research papers and reviews in all branches of science, technology, packaging and engineering of foods and food products. Special emphasis is given to fundamental and applied research findings that have potential for enhancing product quality, extend shelf life of fresh and processed food products and improve process efficiency. Critical reviews on new perspectives in food handling and processing, innovative and emerging technologies and trends and future research in food products and food industry byproducts are also welcome. The journal also publishes book reviews relevant to all aspects of food science, technology and engineering.