{"title":"Development of molecular approach based on PCR assay for detection of histamine producing bacteria.","authors":"Karn Wongsariya, Nuntavan Bunyapraphatsara, Montri Yasawong, Mullika Traidej Chomnawang","doi":"10.1007/s13197-015-1982-1","DOIUrl":null,"url":null,"abstract":"<p><p>Histamine fish poisoning becomes highly concern not only in public health but also economic aspect. Histamine is produced from histidine in fish muscles by bacterial decarboxylase enzyme. Several techniques have been developed to determine the level of histamine in fish and their products but the effective method for detecting histamine producing bacteria is still required. This study was attempted to detect histamine producing bacteria by newly developed PCR condition. Histamine producing bacteria were isolated from scombroid fish and determined the ability to produce histamine of isolated bacteria by biochemical and TLC assays. PCR method was developed to target the histidine decarboxylase gene (hdc). The result showed that fifteen histamine producing bacterial isolates and three standard strains produced an amplicon at the expected size of 571 bp after amplified by PCR using Hdc_2F/2R primers. Fifteen isolates of histamine producing bacteria were classified as M. morganii, E. aerogenes, and A. baumannii. The lowest detection levels of M. morganii and E. aerogenes were 10(2) and 10(5) Cfu/mL in culture media and 10(3) and 10(6) Cfu/mL in fish homogenates, respectively. The limit of detection by this method was clearly shown to be sensitive because the primers could detect the presence of M. morganii and E. aerogenes before the histamine level reached the regulation level at 50 ppm. Therefore, this PCR method exhibited the potential efficiency for detecting the hdc gene from histamine producing bacteria and could be used to prevent the proliferation of histamine producing bacteria in fish and fish products. </p>","PeriodicalId":16004,"journal":{"name":"Journal of Food Science and Technology-mysore","volume":"53 1","pages":"640-8"},"PeriodicalIF":2.6000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science and Technology-mysore","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13197-015-1982-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histamine fish poisoning becomes highly concern not only in public health but also economic aspect. Histamine is produced from histidine in fish muscles by bacterial decarboxylase enzyme. Several techniques have been developed to determine the level of histamine in fish and their products but the effective method for detecting histamine producing bacteria is still required. This study was attempted to detect histamine producing bacteria by newly developed PCR condition. Histamine producing bacteria were isolated from scombroid fish and determined the ability to produce histamine of isolated bacteria by biochemical and TLC assays. PCR method was developed to target the histidine decarboxylase gene (hdc). The result showed that fifteen histamine producing bacterial isolates and three standard strains produced an amplicon at the expected size of 571 bp after amplified by PCR using Hdc_2F/2R primers. Fifteen isolates of histamine producing bacteria were classified as M. morganii, E. aerogenes, and A. baumannii. The lowest detection levels of M. morganii and E. aerogenes were 10(2) and 10(5) Cfu/mL in culture media and 10(3) and 10(6) Cfu/mL in fish homogenates, respectively. The limit of detection by this method was clearly shown to be sensitive because the primers could detect the presence of M. morganii and E. aerogenes before the histamine level reached the regulation level at 50 ppm. Therefore, this PCR method exhibited the potential efficiency for detecting the hdc gene from histamine producing bacteria and could be used to prevent the proliferation of histamine producing bacteria in fish and fish products.
期刊介绍:
The Journal of Food Science and Technology (JFST) is the official publication of the Association of Food Scientists and Technologists of India (AFSTI). This monthly publishes peer-reviewed research papers and reviews in all branches of science, technology, packaging and engineering of foods and food products. Special emphasis is given to fundamental and applied research findings that have potential for enhancing product quality, extend shelf life of fresh and processed food products and improve process efficiency. Critical reviews on new perspectives in food handling and processing, innovative and emerging technologies and trends and future research in food products and food industry byproducts are also welcome. The journal also publishes book reviews relevant to all aspects of food science, technology and engineering.