{"title":"Estimation of anisotropic properties of CMR patient-specific left ventricle using the virtual field method","authors":"Mehdi Ghafarinatanzi, Delphine Perie","doi":"10.1007/s10237-022-01675-1","DOIUrl":null,"url":null,"abstract":"<div><p>Left ventricle (LV) myocardial dysfunction has been recently investigated using the estimation of isotropic myocardial stiffness from magnetic resonance imaging (MRI). However, Myocardium is known to have a 3D complex geometry with anisotropic stiffness. The assessment of the anisotropy properties characterizes structural changes in myocardium as a consequence of heart failure (HF). From image data, the virtual field method (VFM) can determine material stiffness in a non-invasive manner. In the present work, the objective is to compare two inverse identification methods, given the isotropic and anisotropic models in the characterization of properties of myocardium in acute lymphoblastic leukemia (ALL) survivors using VFM and MRI. Two types of VFM approach are presented. Using the first, the virtual displacements (VFs) allow whole-field LV to be imposed into VFM formulation and caused to directly estimate two independent parameters from isotropic constitutive relation. With the second, anisotropic parameters are estimated using piece-wise (Finite element-based) VFM. The resulting values showed significant differences between the subjects in comparative study of leukemia survivors, and variance in estimated parameters by two different VFM approach. This approach would be an efficient tool to characterize early cardiac dysfunction. This work elucidates the benefits and shortcomings of using VFM to determine anisotropic parameters of LV myocardium in linear elastic and of using the FEM application to generate meshes of patient-specific LVs from MRI images.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"22 2","pages":"695 - 710"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-022-01675-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Left ventricle (LV) myocardial dysfunction has been recently investigated using the estimation of isotropic myocardial stiffness from magnetic resonance imaging (MRI). However, Myocardium is known to have a 3D complex geometry with anisotropic stiffness. The assessment of the anisotropy properties characterizes structural changes in myocardium as a consequence of heart failure (HF). From image data, the virtual field method (VFM) can determine material stiffness in a non-invasive manner. In the present work, the objective is to compare two inverse identification methods, given the isotropic and anisotropic models in the characterization of properties of myocardium in acute lymphoblastic leukemia (ALL) survivors using VFM and MRI. Two types of VFM approach are presented. Using the first, the virtual displacements (VFs) allow whole-field LV to be imposed into VFM formulation and caused to directly estimate two independent parameters from isotropic constitutive relation. With the second, anisotropic parameters are estimated using piece-wise (Finite element-based) VFM. The resulting values showed significant differences between the subjects in comparative study of leukemia survivors, and variance in estimated parameters by two different VFM approach. This approach would be an efficient tool to characterize early cardiac dysfunction. This work elucidates the benefits and shortcomings of using VFM to determine anisotropic parameters of LV myocardium in linear elastic and of using the FEM application to generate meshes of patient-specific LVs from MRI images.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.